716 research outputs found

    Two-Layered Superposition of Broadcast/Multicast and Unicast Signals in Multiuser OFDMA Systems

    Full text link
    We study optimal delivery strategies of one common and KK independent messages from a source to multiple users in wireless environments. In particular, two-layered superposition of broadcast/multicast and unicast signals is considered in a downlink multiuser OFDMA system. In the literature and industry, the two-layer superposition is often considered as a pragmatic approach to make a compromise between the simple but suboptimal orthogonal multiplexing (OM) and the optimal but complex fully-layered non-orthogonal multiplexing. In this work, we show that only two-layers are necessary to achieve the maximum sum-rate when the common message has higher priority than the KK individual unicast messages, and OM cannot be sum-rate optimal in general. We develop an algorithm that finds the optimal power allocation over the two-layers and across the OFDMA radio resources in static channels and a class of fading channels. Two main use-cases are considered: i) Multicast and unicast multiplexing when KK users with uplink capabilities request both common and independent messages, and ii) broadcast and unicast multiplexing when the common message targets receive-only devices and KK users with uplink capabilities additionally request independent messages. Finally, we develop a transceiver design for broadcast/multicast and unicast superposition transmission based on LTE-A-Pro physical layer and show with numerical evaluations in mobile environments with multipath propagation that the capacity improvements can be translated into significant practical performance gains compared to the orthogonal schemes in the 3GPP specifications. We also analyze the impact of real channel estimation and show that significant gains in terms of spectral efficiency or coverage area are still available even with estimation errors and imperfect interference cancellation for the two-layered superposition system

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Electromagnetic emission-aware schedulers for the uplink of OFDM wireless communication systems

    Get PDF
    The popularity and convergence of wireless communications have resulted in continuous network upgrades in order to support the increasing demand for bandwidth. However, given that wireless communication systems operate on radiofrequency waves, the health effects of electromagnetic emission from these systems are increasingly becoming a concern due to the ubiquity of mobile communication devices. In order to address these concerns, we propose two schemes (offline and online) for minimizing the EM emission of users in the uplink of OFDM systems, while maintaining an acceptable quality of service. We formulate our offline EM reduction scheme as a convex optimization problem and solve it through water-filling. This is based on the assumption that the long-term channel state information of all the users is known. Given that, in practice, long-term channel state information of all the users cannot always be available, we propose our online EM emission reduction scheme, which is based on minimizing the instantaneous transmit energy per bit of each user. Simulation results show that both our proposed schemes significantly minimize the EM emission when compared to the benchmark classic greedy spectral efficiency based scheme and an energy efficiency based scheme. Furthermore, our offline scheme proves to be very robust against channel prediction errors

    A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks

    Get PDF
    Accepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsNon-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cellular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier simultaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-input multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential research challenges
    • …
    corecore