2,528 research outputs found

    Intelligent Approaches for Routing Protocols In Cognitive Ad-Hoc Networks

    Get PDF
    This dissertation describes the CogNet architecture and five cognitive routing protocols designed to function within this architecture. In this document, I first provide detailed modeling and analysis of CogNet architecture and then provide the detailed approach, mathematical analysis, and simulation results for each of the developed cognitive routing protocols. The fundamental idea for these cognitive routing protocols is that a proper and adaptive network topology should be constructed from network nodes based on predictions using cognitive functions and past experience. The nodes in the cognitive radio network employ machine learning techniques to use past experience and make wise decisions by predicting future network conditions. The cognitive protocol architecture is a cross-layer optimized construct where the lower layer knowledge of the wireless medium is shared with the network layer. This dissertation investigates several intelligent approaches for cognitive routing protocols, such as the multi-channel optimized approach, the scalability optimized cognitive approach, the multi-path optimized approach, and the mobility optimized approach. Analytical and simulation results demonstrate that network performance can be increased significantly by applying cognitive routing protocols

    SMART: A SpectruM-Aware clusteR-based rouTing scheme for distributed cognitive radio networks

    Get PDF
    Cognitive radio (CR) is the next-generation wireless communication system that allows unlicensed users (or secondary users, SUs) to exploit the underutilized spectrum (or white spaces) in licensed spectrum while minimizing interference to licensed users (or primary users, PUs). This article proposes a SpectruM-Aware clusteR-based rouTing (SMART) scheme that enables SUs to form clusters in a cognitive radio network (CRN) and enables each SU source node to search for a route to its destination node on the clustered network. An intrinsic characteristic of CRNs is the dynamicity of operating environment in which network conditions (i.e., PUs’ activities) change as time goes by. Based on the network conditions, SMART enables SUs to adjust the number of common channels in a cluster through cluster merging and splitting, and searches for a route on the clustered network using an artificial intelligence approach called reinforcement learning. Simulation results show that SMART selects stable routes and significantly reduces interference to PUs, as well as routing overhead in terms of route discovery frequency, without significant degradation of throughput and end-to-end delay
    corecore