4 research outputs found

    Radiation therapy calculations using an on-demand virtual cluster via cloud computing

    Full text link
    Computer hardware costs are the limiting factor in producing highly accurate radiation dose calculations on convenient time scales. Because of this, large-scale, full Monte Carlo simulations and other resource intensive algorithms are often considered infeasible for clinical settings. The emerging cloud computing paradigm promises to fundamentally alter the economics of such calculations by providing relatively cheap, on-demand, pay-as-you-go computing resources over the Internet. We believe that cloud computing will usher in a new era, in which very large scale calculations will be routinely performed by clinics and researchers using cloud-based resources. In this research, several proof-of-concept radiation therapy calculations were successfully performed on a cloud-based virtual Monte Carlo cluster. Performance evaluations were made of a distributed processing framework developed specifically for this project. The expected 1/n performance was observed with some caveats. The economics of cloud-based virtual computing clusters versus traditional in-house hardware is also discussed. For most situations, cloud computing can provide a substantial cost savings for distributed calculations.Comment: 12 pages, 4 figure

    GATE Monte Carlo Simulations in a Cloud Computing Environment

    Full text link
    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE\u27s runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon\u27s Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive
    corecore