28 research outputs found

    Sub-Nyquist Channel Estimation over IEEE 802.11ad Link

    Full text link
    Nowadays, millimeter-wave communication centered at the 60 GHz radio frequency band is increasingly the preferred technology for near-field communication since it provides transmission bandwidth that is several GHz wide. The IEEE 802.11ad standard has been developed for commercial wireless local area networks in the 60 GHz transmission environment. Receivers designed to process IEEE 802.11ad waveforms employ very high rate analog-to-digital converters, and therefore, reducing the receiver sampling rate can be useful. In this work, we study the problem of low-rate channel estimation over the IEEE 802.11ad 60 GHz communication link by harnessing sparsity in the channel impulse response. In particular, we focus on single carrier modulation and exploit the special structure of the 802.11ad waveform embedded in the channel estimation field of its single carrier physical layer frame. We examine various sub-Nyquist sampling methods for this problem and recover the channel using compressed sensing techniques. Our numerical experiments show feasibility of our procedures up to one-seventh of the Nyquist rates with minimal performance deterioration.Comment: 5 pages, 5 figures, SampTA 2017 conferenc

    Radar Imaging Based on IEEE 802.11ad Waveform

    Full text link
    The extension to millimeter-wave (mmWave) spectrum of communication frequency band makes it easy to implement a joint radar and communication system using single hardware. In this paper, we propose radar imaging based on the IEEE 802.11ad waveform for a vehicular setting. The necessary parameters to be estimated for inverse synthetic aperture radar (ISAR) imaging are sampled version of round-trip delay, Doppler shift, and vehicular velocity. The delay is estimated using the correlation property of Golay complementary sequences embedded on the IEEE 802.11ad preamble. The Doppler shift is first obtained from least square estimation using radar return signals and refined by correcting the phase uncertainty of Doppler shift by phase rotation. The vehicular velocity is determined from the estimated Doppler shifts and an equation of motion. Finally, an ISAR image is formed with the acquired parameters. Simulation results show that it is possible to obtain recognizable ISAR image from a point scatterer model of a realistic vehicular setting.Comment: 6 pages, 6 figures, and accepted for 2020 IEEE Global Communications Conference (GLOBECOM

    Distributed Radar-aided Vehicle-to-Vehicle Communication

    Get PDF
    Establishing high-rate vehicle-to-vehicle (V2V) linkswith narrow beamwidth is challenging due to the varying networktopology. A too narrow beam may miss the intended receiver,while a too broad beam leads to SNR loss. We propose toharness the high accuracy of radar detections to establish V2V links. In particular, we develop a distributed method where eachvehicle associates local radar detections with GPS informationcommunicated by nearby vehicles. The method relies on thetransformation of relative to global coordinates, the definition ofa suitable metric, and solving an optimal assignment problem. Wedemonstrate that the proposed approach avoids time-consumingchannel estimation and provides high SNR, under the conditionthat reliable relative and absolute location information is present

    Location- and Orientation-Aided Millimeter Wave Beam Selection Using Deep Learning

    Get PDF

    Radar-assisted Predictive Beamforming for Vehicle-to-Infrastructure Links

    Get PDF
    In this paper, we propose a radar-assisted predictive beamforming design for vehicle-to-infrastructure (V2I) communication by relying on the joint sensing and communication functionalities at road side units (RSUs). We present a novel extended Kalman filtering (EKF) framework to track and predict kinematic parameters of the vehicle. By exploiting the radar functionality of the RSU we show that the communication beam tracking overheads can be drastically reduced. Numerical results have demonstrated that the proposed radar-assisted approach significantly outperforms the communication-only feedback based technique in both the angle tracking and the downlink communication.Comment: 6 pages, 3 figures, accepted by IEEE ICC 2020. arXiv admin note: substantial text overlap with arXiv:2001.0930
    corecore