269 research outputs found

    Tracking and control in multi-function radar

    Get PDF
    The phased array multi-function radar is an effective solution to the requirement for simultaneous surveillance and multiple target tracking. However, since it is performing the jobs usually undertaken by several dedicated radars its radar time and energy resources are limited. For this reason, and also due to the large cost of active phased array antennas, it is important for the strategies adopted in the control of the radar to be efficient. This thesis investigates and develops efficient strategies for multi-function radar control and tracking. Particularly the research has focused on the use of rotating array antennas and simultaneous multiple receive beam processing. The findings of the research challenge the traditional view that three or four fixed (static) array faces is the best antenna configuration for a multi-function radar system. By developing novel methods for the comparison of systems utilising different antenna configurations it is shown that a rotating array multi-function radar performs the surveillance function with a greater efficiency in its use of radar time than a static array system. Also, a rotating array system benefits from the ability to distribute the radar resources over the angular coverage in a way that is impossible with a static array system. A novel strategy is presented to achieve this, which allows the rotating array system to better support the realistic situation of a high concentration of radar tasks in a narrow angular sector. It is shown that the use of broadened transmit beams coupled with simultaneous multiple narrow receive beams can eliminate the compromise on radar beamwidth between the surveillance and tracking functions that is associated with multi-function radars. This technique would allow construction of multi-function radar systems with narrow beamwidths, giving improved tracking performance, without extending search frame times excessively. Efficient tracking strategies for both static array and rotating array multi-function radars are developed. They are applied through computer simulation to demonstrate tracking of highly manoeuvrable targets with a narrow beam multi-function radar. Track robustness is attained through the use of multiple beam track updating strategies at little cost in terms of radar time

    Electronic scan weather radar: scan strategy and signal processing for volume targets

    Get PDF
    2013 Fall.Includes bibliographical references.Following the success of the WSR-88D network, considerable effort has been directed toward searching for options for the next generation of weather radar technology. With its superior capability for rapidly scanning the atmosphere, electronically scanned phased array radar (PAR) is a potential candidate. A network of such radars has been recommended for consideration by the National Academies Committee on Weather Radar Technology beyond NEXRAD. While conventional weather radar uses a rotating parabolic antenna to form and direct the beam, a phased array radar superimposes outputs from an array of many similar radiating elements to yield a beam that is scanned electronically. An adaptive scan strategy and advanced signal designs and processing concepts are developed in this work to use PAR effectively for weather observation. An adaptive scan strategy for weather targets is developed based on the space-time variability of the storm under observation. Quickly evolving regions are scanned more often and spatial sampling resolution is matched to spatial scale. A model that includes the interaction between space and time is used to extract spatial and temporal scales of the medium and to define scanning regions. The temporal scale constrains the radar revisit time while the measurement accuracy controls the dwell time. These conditions are employed in a task scheduler that works on a ray-by-ray basis and is designed to balance task priority and radar resources. The scheduler algorithm also includes an optimization procedure for minimizing radar scan time. In this research, a signal model for polarimetric phased array weather radar (PAWR) is presented and analyzed. The electronic scan mechanism creates a complex coupling of horizontal and vertical polarizations that produce the bias in the polarimetric variables retrieval. Methods for bias correction for simultaneous and alternating transmission modes are proposed. It is shown that the bias can be effectively removed; however, data quality degradation occurs at far off boresight directions. The effective range for the bias correction methods is suggested by using radar simulation. The pulsing scheme used in PAWR requires a new ground clutter filtering method. The filter is designed to work with a signal covariance matrix in the time domain. The matrix size is set to match the data block size. The filter's design helps overcome limitations of spectral filtering methods and make efficient use of reducing ground clutter width in PAWR. Therefore, it works on modes with few samples. Additionally, the filter can be directly extended for staggered PRT waveforms. Filter implementation for polarimetric retrieval is also successfully developed and tested for simultaneous and alternating staggered PRT. The performance of these methods is discussed in detail. It is important to achieve high sensitivity for PAWR. The use of low-power solid state transmitters to keep costs down requires pulse compression technique. Wide-band pulse compression filters will partly reduce the system sensitivity performance. A system for sensitivity enhancement (SES) for pulse compression weather radar is developed to mitigate this issue. SES uses a dual-waveform transmission scheme and an adaptive pulse compression filter that is based on the self-consistency between signals of the two waveforms. Using SES, the system sensitivity can be improved by 8 to 10 dB

    Collaborative Trajectory Planning and Resource Allocation for Multi-Target Tracking in Airborne Radar Networks under Spectral Coexistence

    Get PDF
    This paper develops a collaborative trajectory planning and resource allocation (CTPRA) strategy for multi-target tracking (MTT) in a spectral coexistence environment utilizing airborne radar networks. The key mechanism of the proposed strategy is to jointly design the flight trajectory and optimize the radar assignment, transmit power, dwell time, and signal effective bandwidth allocation of multiple airborne radars, aiming to enhance the MTT performance under the constraints of the tolerable threshold of interference energy, platform kinematic limitations, and given illumination resource budgets. The closed-form expression for the Bayesian CramĆ©rā€“Rao lower bound (BCRLB) under the consideration of spectral coexistence is calculated and adopted as the optimization criterion of the CTPRA strategy. It is shown that the formulated CTPRA problem is a mixed-integer programming, non-linear, non-convex optimization model owing to its highly coupled Boolean and continuous parameters. By incorporating semi-definite programming (SDP), particle swarm optimization (PSO), and the cyclic minimization technique, an iterative four-stage solution methodology is proposed to tackle the formulated optimization problem efficiently. The numerical results validate the effectiveness and the MTT performance improvement of the proposed CTPRA strategy in comparison with other benchmarks

    Target recognition techniques for multifunction phased array radar

    Get PDF
    This thesis, submitted for the degree of Doctor of Philosophy at University College London, is a discussion and analysis of combined stepped-frequency and pulse-Doppler target recognition methods which enable a multifunction phased array radar designed for automatic surveillance and multi-target tracking to offer a Non Cooperative Target Recognition (NCTR) capability. The primary challenge is to investigate the feasibility of NCTR via the use of high range resolution profiles. Given stepped frequency waveforms effectively trade time for enhanced bandwidth, and thus resolution, attention is paid to the design of a compromise between resolution and dwell time. A secondary challenge is to investigate the additional benefits to overall target classification when the number of coherent pulses within an NCTR wavefrom is expanded to enable the extraction of spectral features which can help to differentiate particular classes of target. As with increased range resolution, the price for this extra information is a further increase in dwell time. The response to the primary and secondary challenges described above has involved the development of a number of novel techniques, which are summarized below: ā€¢ Design and execution of a series of experiments to further the understanding of multifunction phased array Radar NCTR techniques ā€¢ Development of a ā€˜Hybridā€™ stepped frequency technique which enables a significant extension of range profiles without the proportional trade in resolution as experienced with ā€˜Classicalā€™ techniques ā€¢ Development of an ā€˜end to endā€™ NCTR processing and visualization pipeline ā€¢ Use of ā€˜Doppler fractionā€™ spectral features to enable aircraft target classification via propulsion mechanism. Combination of Doppler fraction and physical length features to enable broad aircraft type classification. ā€¢ Optimization of NCTR method classification performance as a function of feature and waveform parameters. ā€¢ Generic waveform design tools to enable delivery of time costly NCTR waveforms within operational constraints. The thesis is largely based upon an analysis of experimental results obtained using the multifunction phased array radar MESAR2, based at BAE Systems on the Isle of Wight. The NCTR mode of MESAR2 consists of the transmission and reception of successive multi-pulse coherent bursts upon each target being tracked. Each burst is stepped in frequency resulting in an overall bandwidth sufficient to provide sub-metre range resolution. A sequence of experiments, (static trials, moving point target trials and full aircraft trials) are described and an analysis of the robustness of target length and Doppler spectra feature measurements from NCTR mode data recordings is presented. A recorded data archive of 1498 NCTR looks upon 17 different trials aircraft using five different varieties of stepped frequency waveform is used to determine classification performance as a function of various signal processing parameters and extent (numbers of pulses) of the data used. From analysis of the trials data, recommendations are made with regards to the design of an NCTR mode for an operational system that uses stepped frequency techniques by design choice

    Autonomous agents for multi-function radar resource management

    Get PDF
    The multifunction radar, aided by advances in electronically steered phased array technology, is capable of supporting numerous, differing and potentially conflicting tasks. However, the full potential of the radar system is only realised through its ability to automatically manage and configure the finite resource it has available. This thesis details the novel application of agent systems to this multifunction radar resource management problem. Agent systems are computational societies where the synergy of local interactions between agents produces emergent, global desirable behaviour. In this thesis the measures and models which can be used to allocate radar resource is explored; this choice of objective function is crucial as it determines which attribute is allocated resource and consequently constitutes a description of the problem to be solved. A variety of task specific and information theoretic measures are derived and compared. It is shown that by utilising as wide a variety of measures and models as possible the radarā€™s multifunction capability is enhanced. An agent based radar resource manager is developed using the JADE Framework which is used to apply the sequential first price auction and continuous double auctions to the multifunction radar resource management problem. The application of the sequential first price auction leads to the development of the Sequential First Price Auction Resource Management algorithm from which numerous novel conclusions on radar resource management algorithm design are drawn. The application of the continuous double auction leads to the development of the Continuous Double Auction Parameter Selection (CDAPS) algorithm. The CDAPS algorithm improves the current state of the art by producing an improved allocation with low computational burden. The algorithm is shown to give worthwhile improvements in task performance over a conventional rule based approach for the tracking and surveillance functions as well as exhibiting graceful degradation and adaptation to a dynamic environment

    Signal Processing Techniques and Concept of Operations for Polarimetric Rotating Phased Array Radar

    Get PDF
    The Weather Surveillance Radar 1988 Doppler (WSR-88D) network has been operational for over 30 years and is still the primary observational instrument employed by the National Weather Service (NWS) forecasters to support their critical mission of issuing severe weather warnings and forecasts in the United States. Nevertheless, the WSR-88Ds have exceeded their engineering design lifespan and are projected to reach the end of operational lifetime by 2040. Technological limitations may prevent the WSR-88D to meet demanding functional requirements for future observational needs. The National Oceanic and Atmospheric Administration (NOAA) has started considering radar systems with advanced capabilities for the eventual replacement of the WSR-88D. Unique and flexible capabilities offered by Phased Array Radar (PAR) technology support the required enhanced weather surveillance strategies that are envisioned to improve the weather radar products, making PAR technology an attractive candidate for the next generation of weather radars. If PAR technology is to replace the operational WSR-88D, important decisions must be made regarding the architecture that will be needed to meet the functional requirements. A four-faced planar PAR (4F-PAR) is expected to achieve the requirements set forth by NOAA and the NWS, but deploying and maintaining an operational network of these radars across the U.S. will likely be unaffordable. A more affordable alternative radar system is based on a single-face Rotating PAR (RPAR) architecture, which is capable of exceeding the functionality provided by the WSR-88D network. This dissertation is focused on exploring advanced RPAR scanning techniques in support of meeting future radar functional requirements. A survey of unique RPAR capabilities is conducted to determine which ones could be exploited under an RPAR Concept of Operations (CONOPS). Three capabilities are selected for further investigation: beam agility, digital beamforming, and dwell flexibility. The RPARs beam agility is exploited to minimize the beam smearing that results from the rotation of the antenna system over the collection of samples in the coherent processing interval. The use of digital beamforming is investigated as a possible way to reduce the scan time and/or the variance of estimates. The RPAR's dwell flexibility capability is explored as a possible way to tailor the scan to meteorological observations with the goal of improving data quality. Three advanced RPAR scanning techniques are developed exploiting these capabilities, and their performance in support of meeting the radar functional requirements is quantified. The proposed techniques are implemented on the Advanced Technology Demonstrator (ATD), a dual-polarization RPAR system at the National Severe Storms Laboratory (NSSL) in Norman, OK. Data collection experiments are conducted with the ATD to demonstrate the performance of the proposed techniques for dual-polarization observations. Results are verified by quantitatively comparing fields of radar-variable estimates produced using the proposed RPAR techniques with those produced by a well-known collocated WSR-88D radar simultaneously collecting data following an operational Volume Coverage Pattern (VCP). The techniques introduced are integrated to operate simultaneously, and used to design an RPAR CONOPS that can complete a full volume scan in about one minute, while achieving other demanding functional requirements. It is expected that the findings in this dissertation will provide valuable information that can support the design of the future U.S. weather surveillance radar network

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    Characterising Spatial and Temporal Ionospheric Variability with a Network of Oblique Angle-of-arrival and Doppler Ionosondes

    Get PDF
    Ionospheric variability exists on a broad range of scales, and routinely impacts skywave propagation modes of high frequency radio waves, to the detriment of radar and communication systems. In order to better understand the electron density structures associated with such variability at mid-latitudes, a network of oblique angle-of-arrival (AoA) and Doppler ionosondes were installed in central and northern Australia as part of the ELOISE campaign in 2015. This thesis analyses observations from the ELOISE AoA ionosondes, with a focus on characterising the influence of medium- to large- scale gradients and signatures of travelling ionospheric disturbances (TIDs). Following an overview of the experiment, the design and calibration of the new ionosonde system is described. With multi-channel receivers connected to each element of two twin-arm arrays, a total of eleven AoA paths of between 900 and 2700 km were collected, including nine with interleaved Doppler measurements using a special channel scattering function (CSF) capability. On-board signal processing was developed to perform real-time clear channel evaluation and CSF scheduling, and generate the AoA ionograms and delay-Doppler images with fitted electron density profiles. In further offline analysis, peak detection and mode classification was carried out, to support reflection point mapping and tilt estimation. Significant testing and validation of the new ionosonde before and after the experiment revealed AoA uncertainties on the scale of 0.2ā€“0.5Ā° in bearing and 0.4ā€“0.9Ā° in elevation. Having identified a low-elevation bias, models of tropospheric refraction and antenna mutual coupling effects were considered as possible correction strategies, but ultimately an empirical approach based on aggregated ionospheric returns was implemented. Small-scale (intra-dwell) ionospheric variability also has the potential to compromise results, through unresolved multi-mode mixing, and this has been investigated using a combination of spatial and temporal variability metrics derived from the CSF data. The analysis of large quantities of F2 peak data shows persistent diurnal patterns in the oblique AoA observables that are also well-captured by a conventional data-assimilative ionospheric model, even without the benefit of AoA and Doppler inputs. Furthermore, Doppler measurements are reproduced remarkably well using just the midpoint fitted profiles. A statistical study has quantified the level of consistency between observations and model, to provide greater confidence in the results. Many of the geophysical features can be interpreted as ionospheric gradients, as evident in the tilt estimates, and horizontally moving structures such as TIDs, using a form of Doppler-based drift analysis. While signatures of TIDs vary considerably, two simple wave-like perturbation models have been evaluated to help classify quasi-periodic behaviour in the AoA observations, as well as understand the directional filtering effect imposed by the path geometry. In some cases, a set of TID parameters can be determined by eye, but in others automatic parameter inversion techniques may be more viable. Two such techniques were implemented but results using both real and synthetic data demonstrated some significant limitations. Finally, attempts to relate TID signatures across multiple paths shows promise, but there still appears to be a strong dependence on path geometry that is difficult to eliminate.Thesis (Ph.D.) -- University of Adelaide, School of Physical Sciences, 202

    Electronic Warfare Receiver Resource Management and Optimization

    Get PDF
    Optimization of electronic warfare (EW) receiver scan strategies is critical to improving the probability of surviving military missions in hostile environments. The problem is that the limited understanding of how dynamic variations in radar and EW receiver characteristics has influenced the response time to detect enemy threats. The dependent variable was the EW receiver response time and the 4 independent variables were EW receiver revisit interval, EW receiver dwell time, radar scan time, and radar illumination time. Previous researchers have not explained how dynamic variations of independent variables affected response time. The purpose of this experimental study was to develop a model to understand how dynamic variations of the independent variables influenced response time. Queuing theory provided the theoretical foundation for the study using Little\u27s formula to determine the ideal EW receiver revisit interval as it states the mathematical relationship among the variables. Findings from a simulation that produced 17,000 data points indicated that Little\u27s formula was valid for use in EW receivers. Findings also demonstrated that variation of the independent variables had a small but statistically significant effect on the average response time. The most significant finding was the sensitivity in the variance of response time given minor differences of the test conditions, which can lead to unexpectedly long response times. Military users and designers of EW systems benefit most from this study by optimizing system response time, thus improving survivability. Additionally, this research demonstrated a method that may improve EW product development times and reduce the cost to taxpayers through more efficient test and evaluation techniques

    Radar Technology

    Get PDF
    In this book ā€œRadar Technologyā€, the chapters are divided into four main topic areas: Topic area 1: ā€œRadar Systemsā€ consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: ā€œRadar Applicationsā€ shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: ā€œRadar Functional Chain and Signal Processingā€ describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: ā€œRadar Subsystems and Componentsā€ consists of design technology of radar subsystem components like antenna design or waveform design
    • ā€¦
    corecore