318 research outputs found

    Explicit Construction of Minimum Bandwidth Rack-Aware Regenerating Codes

    Full text link
    In large data centers, storage nodes are organized in racks, and the cross-rack communication dominates the system bandwidth. We explicitly construct codes for exact repair of single node failures that achieve the optimal tradeoff between the storage redundancy and cross-rack repair bandwidth at the minimum bandwidth point (i.e., the cross-rack bandwidth equals the storage size per node). Moreover, we explore the node repair when only a few number of helper racks are connected. Thus we provide explicit constructions of codes for rack-aware storage with the minimum cross-rack repair bandwidth, lowest possible redundancy, and small repair degree (i.e., the number of helper racks connected for repair).Comment: 4 pages, 1 figure. arXiv admin note: text overlap with arXiv:2101.0873

    A Class of MSR Codes for Clustered Distributed Storage

    Full text link
    Clustered distributed storage models real data centers where intra- and cross-cluster repair bandwidths are different. In this paper, exact-repair minimum-storage-regenerating (MSR) codes achieving capacity of clustered distributed storage are designed. Focus is given on two cases: ϵ=0\epsilon=0 and ϵ=1/(n−k)\epsilon=1/(n-k), where ϵ\epsilon is the ratio of the available cross- and intra-cluster repair bandwidths, nn is the total number of distributed nodes and kk is the number of contact nodes in data retrieval. The former represents the scenario where cross-cluster communication is not allowed, while the latter corresponds to the case of minimum cross-cluster bandwidth that is possible under the minimum storage overhead constraint. For the ϵ=0\epsilon=0 case, two types of locally repairable codes are proven to achieve the MSR point. As for ϵ=1/(n−k)\epsilon=1/(n-k), an explicit MSR coding scheme is suggested for the two-cluster situation under the specific condition of n=2kn = 2k.Comment: 9 pages, a part of this paper is submitted to IEEE ISIT201

    Global repair bandwidth cost optimization of generalized regenerating codes in clustered distributed storage systems

    Get PDF
    In clustered distributed storage systems (CDSSs), one of the main design goals is minimizing the transmission cost during the failed storage nodes repairing. Generalized regenerating codes (GRCs) are proposed to balance the intra-cluster repair bandwidth and the inter-cluster repair bandwidth for guaranteeing data availability. The trade-off performance of GRCs illustrates that, it can reduce storage overhead and inter-cluster repair bandwidths simultaneously. However, in practical big data storage scenarios, GRCs cannot give an effective solution to handle the heterogeneity of bandwidth costs among different clusters for node failures recovery. This paper proposes an asymmetric bandwidth allocation strategy (ABAS) of GRCs for the inter-cluster repair in heterogeneous CDSSs. Furthermore, an upper bound of the achievable capacity of ABAS is derived based on the information flow graph (IFG), and the constraints of storage capacity and intra-cluster repair bandwidth are also elaborated. Then, a metric termed global repair bandwidth cost (GRBC), which can be minimized regarding of the inter-cluster repair bandwidths by solving a linear programming problem, is defined. The numerical results demonstrate that, maintaining the same data availability and storage overhead, the proposed ABAS of GRCs can effectively reduce the GRBC compared to the traditional symmetric bandwidth allocation schemes

    TOWARDS DIGITAL TWINS FOR OPTIMIZING METRICS IN DISTRIBUTED STORAGE SYSTEMS - A REVIEW

    Get PDF
    With the exponential data growth, there is a crucial need for highly available, scalable, reliable, and cost-effective Distributed Storage Systems (DSSs). To ensure such efficient and fault tolerant systems, replication and erasure coding techniques are typically used in traditional DSSs. However, these systems are prone to failure and require different failure prevention and recovery algorithms. Failure recovery of DSS and data reconstruction techniques take into consideration different performance metrics optimization in the recovery process. In this paper, DSS performance metrics are introduced. Several recent papers related to adopting erasure coding in DSSs are surveyed together with highlighting related performance metrics introduced in the context of these papers. Next, we present recent literature where Digital Twins (DTs) are involved in monitoring DSSs and assisting the data center managers in intelligent decision-making. Finally, important open issues are identified to inspire future studies for fully efficient DSSs
    • …
    corecore