446,484 research outputs found

    Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples

    Get PDF
    Aims: To develop a real-time (rt) PCR for species differentiation of thermophilic Campylobacter and to develop a method for assessing co-colonization of pigs by Campylobacter spp. Methods and results: The specificity of a developed 5’nuclease rt-PCR for species-specific identification of C. jejuni, C. coli, C. lari, C. upsaliensis and of a hipO gene nucleotide probe for detection of C. jejuni by colony-blot hybridization were determined by testing a total of 75 reference strains of Campylobacter spp. and related organisms. The rt-PCR method allowed species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs. Conclusions: The rt-PCR was specific for Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis and the colony-blot hybridization approach provided an effective tool for isolation of C. jejuni from pig faecal samples typically dominated by C. coli. Significance and impact of study: Species differentiation between thermophilic Campylobacter is difficult by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig feces

    Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques

    Get PDF
    Background: Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus that causes severe disease in tomato (Solanum lycopersicum L.) crops. In Italy, the first ToBRFV outbreak occurred in 2018 in several provinces of the Sicily region. ToBRFV outbreak represents a serious threat for tomato crops in Italy and the Mediterranean Basin. Methods: Molecular and biological characterisation of the Sicilian ToBRFV ToB-SIC01/19 isolate was performed, and a sensitive and specific Real-time RT-PCR TaqMan minor groove binder probe method was developed to detect ToBRFV in infected plants and seeds. Moreover, four different sample preparation procedures (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were evaluated. Results: The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with the isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and TBRFV-IL from Israel. The ToB-SIC01/19 isolate was successfully transmitted by mechanical inoculations in S. lycopersicum L. and Capsicum annuum L., but no transmission occurred in S. melongena L. The developed real-time RT-PCR, based on the use of a primer set designed on conserved sequences in the open reading frames3, enabled a reliable quantitative detection. This method allowed clear discrimination of ToBRFV from other viruses belonging to the genus Tobamovirus, minimising false-negative results. Using immunocapture and total RNA extraction procedures, the real-time RT-PCR and end-point RT-PCR gave the same comparable results. Using direct crude extracts and leaf-disk crude extracts, the end-point RT-PCR was unable to provide a reliable result. This developed highly specific and sensitive real-time RT-PCR assay will be a particularly valuable tool for early ToBRFV diagnosis, optimising procedures in terms of costs and time

    Optimization of rTDMH as a Reagent Toward Improving the Sensitivity of the RT-PCR Based Diagnosis for Mycobacterium Tuberculosis

    Get PDF
    Current diagnostic tools being used for tuberculosis lack the speed and sensitivity necessary to successfully combat the current tuberculosis epidemic. Real-time Polymerase Chain Reaction, RT-PCR, can provide the rapid and specific diagnosis that is currently in demand in the global community. Its disadvantage is that due to the waxy and robust nature of the M. tuberculosis membrane, not enough genomic DNA is present to provide for amplification in a RT-PCR. It was previously found in our laboratory that hydrolysis of one of abundant glycolipid of mycobacterial envelope, Trehalose, 6,6’-dimycolate, by a recombinant TDM-specific hydrolase caused rapid lysis of cell (Yong et.al. manuscript submitted). In this study, we tested if rapid lysis by TDM-specific hydrolase (rTDMH) can be exploited in conjunction with the RT-PCR to develop a sensitive diagnosis of tuberculosis. Results demonstrated that by incubation of both attenuated M. tuberculosis, and virulent M. tuberculosis with rTDMH for lysis and subsequent usage of this lysate in a RT-PCR assay, yields sensitive amplification of mycobacterial DNA. rTDMH-mediated lsyis could facilitate amplification of even 10 bacilli, the rTDMH treated cells show amplification while lack of treatment failed to detect these bacilli These results were consistent in in-vitro liquid culture and in complex sputum samples spiked with the mycobacteria, showing that incubation with rTDMH can improve the sensitivity of the RT-PCR. Statement of Public Health relevance: Using rTDMH with RT-PCR as an improved diagnostic tool for tuberculosis due to the rapid, accurate and sensitive nature of the assay could provide the global community with a much better method of diagnosing a disease that has plagued the world for thousands of years. Tuberculosis infects 9 million people and kills 3 million people every year and presently one-third of the world’s population is infected with it. A better diagnostic tool could result in reducing the spread of disease; reducing the mortality associated with disease, especially in HIV infected individuals; and on a broader scale, could reduce the economic burden associated with the diseas

    Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples

    Get PDF
    Fragmented RNA from formalin-fixed paraffin-embedded (FFPE) tissue is a known obstacle to gene expression analysis. In this study, the impact of RNA integrity, gene-specific reverse transcription and targeted cDNA preamplification was quantified in terms of reverse transcription polymerase chain reaction (RT-qPCR) sensitivity by measuring 48 protein coding genes on eight duplicate cultured cancer cell pellet FFPE samples and twenty cancer tissue FFPE samples. More intact RNA modestly increased gene detection sensitivity by 1.6 fold (earlier detection by 0.7 PCR cycles, 95% CI = 0.593-0.850). Application of gene-specific priming instead of whole transcriptome priming during reverse transcription further improved RT-qPCR sensitivity by a considerable 4.0 fold increase (earlier detection by 2.0 PCR cycles, 95% CI = 1.73-2.32). Targeted cDNA preamplification resulted in the strongest increase of RT-qPCR sensitivity and enabled earlier detection by an average of 172.4 fold (7.43 PCR cycles, 95% CI = 6.83-7.05). We conclude that gene-specific reverse transcription and targeted cDNA preamplification are adequate methods for accurate and sensitive RT-qPCR based gene expression analysis of FFPE material. The presented methods do not involve expensive or complex procedures and can be easily implemented in any routine RT-qPCR practice

    Multiplex Detection of Aspergillus fumigatus Mycoviruses.

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Mycoviruses are viruses that naturally infect and replicate in fungi. They are widespread in all major fungal groups including plant and animal pathogenic fungi. Several dsRNA mycoviruses have been reported in Aspergillus fumigatus. Multiplex polymerase chain reaction (PCR) amplification is a version of PCR that enables amplification of different targets simultaneously. This technique has been widely used for detection and differentiation of viruses especially plant viruses such as those which infect tobacco, potato and garlic. For rapid detection, multiplex RT-PCR was developed to screen new isolates for the presence of A. fumigatus mycoviruses. Aspergillus fumigatus chrysovirus (AfuCV), Aspergillus fumigatus partitivirus (AfuPV-1), and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1) dsRNAs were amplified in separate reactions using a mixture of multiplex primer pairs. It was demonstrated that in the presence of a single infection, primer pair mixtures only amplify the corresponding single virus infection. Mixed infections using dual or triple combinations of dsRNA viruses were also amplified simultaneously using multiplex RT-PCR. Up until now, methods for the rapid detection of Aspergillus mycoviruses have been restricted to small scale dsRNA extraction approaches which are laborious and for large numbers of samples not as sensitive as RT-PCR. The multiplex RT-PCR assay developed here will be useful for studies on determining the incidence of A. fumigatus mycoviruses. This is the first report on multiplex detection of A. fumigatus mycovirusesPeer reviewe

    Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings

    Get PDF
    Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot‐and‐mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple‐to‐use technologies, including molecular‐based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)‐specific reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) and real‐time RT‐PCR (rRT‐PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory‐based rRT‐PCR. However, the lack of robust ‘ready‐to‐use kits’ that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT‐PCR and RT‐LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real‐time, and for the RT‐LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV

    Molecular detection and phylogenetic analysis of Peste des petits ruminants virus circulating in small ruminants in eastern Amhara region, Ethiopia

    Get PDF
    Background: Peste des Petits Ruminants (PPR) is a severe, highly infectious and fatal viral disease of small ruminants. Four lineages of PPR virus have been identified globally based on sequence analysis of the nucleoprotein (N) and fusion (F) gene. The aim of this study was to isolate and genetically characterize recently circulating PPR virus in small ruminants in the eastern Amhara region in Ethiopia. A total of 28 anti-mortem samples (gum debris, nasal and ocular swab) were collected from clinically suspicious animals and examined for the presence of PPRV by a one-step RT-PCR assay. Samples positive with RT-PCR were subjected to isolation of the virus which were subsequently genetically characterized by sequencing of the nucleoprotein (N) gene and phylogenetic analysis of PPR virus (PPRV) strains. Results: Of the 28 clinical samples examined, 46.4% were positive with RT-PCR for viral nucleic acid. The PPRV was successfully isolated on CHS-20 cell line with the ovine signaling lymphocyte activation molecule (SLAM) receptor expressed on the cell surface and confirmed with RT-PCR and IFAT assay. The nucleotide sequence and phylogenetic analysis indicated that the PPRV obtained were clustered genetically with Lineage IV isolates of the virus. Conclusion: The successful isolation of the virus and molecular findings of this study confirmed active lineage IV PPRV infections among populations of sheep and goats in eastern Amhara, suggesting risks for potential spread of the disease to currently free areas. Thus, we recommend systematic vaccination to contain outbreaks in affected districts and geographically linked surrounding districts to which the disease could potentially spread due to different epidemiological linkages

    An ultrasensitive reverse transcription polymerase chain reaction assay to detect asymptomatic low-density Plasmodium falciparum and Plasmodium vivax infections in small volume blood samples.

    Get PDF
    BackgroundHighly sensitive, scalable diagnostic methods are needed to guide malaria elimination interventions. While traditional microscopy and rapid diagnostic tests (RDTs) are suitable for the diagnosis of symptomatic malaria infection, more sensitive tests are needed to screen for low-density, asymptomatic infections that are targeted by interventions aiming to eliminate the entire reservoir of malaria infection in humans.MethodsA reverse transcription polymerase chain reaction (RT- PCR) was developed for multiplexed detection of the 18S ribosomal RNA gene and ribosomal RNA of Plasmodium falciparum and Plasmodium vivax. Simulated field samples stored for 14 days with sample preservation buffer were used to assess the analytical sensitivity and specificity. Additionally, 1750 field samples from Southeastern Myanmar were tested both by RDT and ultrasensitive RT-PCR.ResultsLimits of detection (LoD) were determined under simulated field conditions. When 0.3 mL blood samples were stored for 14 days at 28 °C and 80% humidity, the LoD was less than 16 parasites/mL for P. falciparum and 19.7 copies/”L for P. vivax (using a plasmid surrogate), about 10,000-fold lower than RDTs. Of the 1739 samples successfully evaluated by both ultrasensitive RT-PCR and RDT, only two were RDT positive while 24 were positive for P. falciparum, 108 were positive for P. vivax, and 127 were positive for either P. vivax and/or P. falciparum using ultrasensitive RT-PCR.ConclusionsThis ultrasensitive RT-PCR method is a robust, field-tested screening method that is vastly more sensitive than RDTs. Further optimization may result in a truly scalable tool suitable for widespread surveillance of low-level asymptomatic P. falciparum and P. vivax parasitaemia
    • 

    corecore