30,691 research outputs found
The Catastrophe of Images
A review of:Allen MeekBiopolitical Media: Catastrophe, Immunity and Bare LifeRoutledge, Abingdon, 2016ISBN 9781138887060 RRP £90.00 (hb
Effects of robotic-assisted laparoscopic prostatectomy on surgical pathology specimens
Background
Robotic-assisted laparoscopic prostatectomy (RALP) has greatly changed clinical management of prostate cancer. It is important for pathologists and urologists to compare RALP with conventional open radical retropubic prostatectomy (RRP), and evaluate their effects on surgical pathology specimens.
Methods
We retrospectively reviewed and statistically analyzed 262 consecutive RALP (n = 182) and RRP (n = 80) procedures performed in our institution from 2007 to 2010. From these, 49 RALP and 33 RRP cases were randomly selected for additional microscopic examination to analyze the degree of capsular incision and the amount of residual prostate surface adipose tissue.
Results
Positive surgical margins were present in 28.6% RALP and 57.5% RRP cases, a statistically significant difference. In patients with stage T2c tumors, which represent 61.2% RALP and 63.8% RRP patients, the positive surgical margin rate was 24.1% in the RALP group and 58.8% in the RRP group (statistically significant difference). For other pathologic stages, the differences in positive margins between RALP and RRP groups were not statistically significant. The incidence of positive surgical margins after RALP was related to higher tumor stage, higher Gleason score, higher tumor volume and lower prostate weight, but was not related to the surgeons performing the procedure. When compared with RRP, RALP also caused less severe prostatic capsular incision and maintained larger amounts of residual surface adipose tissue in prostatectomy specimens.
Conclusions
In this study RALP showed a statistically significant lower positive surgical margin rate than RRP. Analysis of capsular incision and amount of prostatic surface residual adipose tissue suggested that RALP caused less prostatic capsular damage than RRP
Downlink Performance of Superimposed Pilots in Massive MIMO systems
In this paper, we investigate the downlink throughput performance of a
massive multiple-input multiple-output (MIMO) system that employs superimposed
pilots for channel estimation. The component of downlink (DL) interference that
results from transmitting data alongside pilots in the uplink (UL) is shown to
decrease at a rate proportional to the square root of the number of antennas at
the BS. The normalized mean-squared error (NMSE) of the channel estimate is
compared with the Bayesian Cram\'{e}r-Rao lower bound that is derived for the
system, and the former is also shown to diminish with increasing number of
antennas at the base station (BS). Furthermore, we show that staggered pilots
are a particular case of superimposed pilots and offer the downlink throughput
of superimposed pilots while retaining the UL spectral and energy efficiency of
regular pilots. We also extend the framework for designing a hybrid system,
consisting of users that transmit either regular or superimposed pilots, to
minimize both the UL and DL interference. The improved NMSE and DL rates of the
channel estimator based on superimposed pilots are demonstrated by means of
simulations.Comment: 28 single-column pages, 6 figures, 1 table, Submitted to IEEE Trans.
Wireless Commun. in Aug 2017. Revised Submission in Feb. 201
Gravitational radiation timescales for extreme mass ratio inspirals
The capture and inspiral of compact stellar masses into massive black holes
is an important source of low-frequency gravitational waves (with frequencies
of ~1-100mHz), such as those that might be detected by the planned Laser
Interferometer Space Antenna (LISA). Simulations of stellar clusters designed
to study this problem typically rely on simple treatments of the black hole
encounter which neglect some important features of orbits around black holes,
such as the minimum radii of stable, non-plunging orbits. Incorporating an
accurate representation of the orbital dynamics near a black hole has been
avoided due to the large computational overhead. This paper provides new, more
accurate, expressions for the energy and angular momentum lost by a compact
object during a parabolic encounter with a non-spinning black hole, and the
subsequent inspiral lifetime. These results improve on the Keplerian
expressions which are now commonly used and will allow efficient computational
simulations to be performed that account for the relativistic nature of the
spacetime around the central black hole in the system.Comment: 19 pages, 4 figures. Changed in response to referee's report.
Accepted for publication in Astrophysical Journa
Righteous patriots, corrupted élites, undeserving poors. The construction of multiple social boundaries in the National Front
Based on life histories of National Front activists, this article analyses how multiple boundaries - pertaining to ethnic and political, but also class and spatial divides - are constructed and negotiated in the party. Ethnicity and class shape the ways in which the activists identify with the party and accommodate the construction of political outsiders and ethnic Others forged by the party populist propaganda. The article thus contributes to the study of radical right-wing populist parties by considering the impact of ethnicity and class on activism and party membership
Synaptic actions of amyotrophic-lateral-sclerosis-associated G85R-SOD1 in the squid giant synapse
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Song, Y. Synaptic actions of amyotrophic-lateral-sclerosis-associated G85R-SOD1 in the squid giant synapse. Eneuro, (2020): ENEURO.0369-19.2020, doi: 10.1523/ENEURO.0369-19.2020.Altered synaptic function is thought to play a role in many neurodegenerative diseases, but little is known about the underlying mechanisms for synaptic dysfunction. The squid giant synapse (SGS) is a classical model for studying synaptic electrophysiology and ultrastructure, as well as molecular mechanisms of neurotransmission. Here, we conduct a multidisciplinary study of synaptic actions of misfolded human G85R-SOD1 causing familial Amyotrophic Lateral Sclerosis (fALS). G85R-SOD1, but not WT-SOD1, inhibited synaptic transmission, altered presynaptic ultrastructure, and reduced both the size of the Readily Releasable Pool (RRP) of synaptic vesicles and mobility from the Reserved Pool (RP) to the RRP. Unexpectedly, intermittent high frequency stimulation (iHFS) blocked inhibitory effects of G85R-SOD1 on synaptic transmission, suggesting aberrant Ca2+ signaling may underlie G85R-SOD1 toxicity. Ratiometric Ca2+ imaging showed significantly increased presynaptic Ca2+ induced by G85R-SOD1 that preceded synaptic dysfunction. Chelating Ca2+ using EGTA prevented synaptic inhibition by G85R-SOD1, confirming the role of aberrant Ca2+ in mediating G85R-SOD1 toxicity. These results extended earlier findings in mammalian motor neurons and advanced our understanding by providing possible molecular mechanisms and therapeutic targets for synaptic dysfunctions in ALS as well as a unique model for further studies.Grass Foundation, HHMI, MGH Jack Satter Foundation, Harvard University ALS and Alzheimer's Endowed Research Fund, Harvard Brain Science Initiative
- …
