522 research outputs found

    Occult macular dystrophy in an Italian family carrying a mutation in the RP1L1 gene.

    Get PDF
    Occult macular dystrophy (OMD) is an inherited macular disease characterized by progressive visual decline with the absence of visible retinal abnormalities. Typical alterations of the retinal structure are detectable by spectral domain optical coherence tomography (SD\u2011OCT). Mutations in the RP1L1 gene have been identified to be responsible for the disease in Asian subjects. The present study assessed the role of mutations in the RP1L1 gene in an Italian family with OMD. One patient with OMD and five related subjects (two male offspring affected by progressive visual decline and three asymptomatic siblings of the patient) were subjected to complete ophthalmological examination. SD\u2011OCT was also performed. All subjects were screened for OMD\u2011associated genetic mutations in the RP1L1 gene. The OMD patient and the two symptomatic offspring presented with a reduced best\u2011corrected visual acuity. Although no fundus abnormalities were observed, SD\u2011OCT examination showed that the external limiting membrane and the inner segment/outer segment band were not clearly identifiable and a focal disruption of the photoreceptor layer was present. The degree of photoreceptor alterations was correlated with the severity of visual impairment. Clinical and tomographic results in the three asymptomatic relatives were normal. A p.Arg45Trp mutation in the RP1L1 gene was identified in the OMD patient, in the two symptomatic offspring and also in two of the asymptomatic siblings of the patient. The identification of RP1L1 mutations in subjects with OMD may improve the accuracy of diagnosis of this rare condition and may aid in enhancing the efficacy of genetic counseling

    De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa.

    Get PDF
    BackgroundRetinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa.MethodsVariant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing.Results and conclusionsA total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon

    Evaluation of autosomal dominant retinal dystrophy genes in an unaffected cohort suggests rare or private missense variants may often be benign.

    Get PDF
    BackgroundMany genes have been reported as harboring autosomal dominant mutations causing retinal dystrophy. As newly available gene panel sequencing and whole exome sequencing will open these genes up to greater scrutiny, we assess the rate of rare coding variation in these genes among unaffected individuals to provide context for variants that will be discovered when clinical subjects are sequenced.MethodsPublicly available data from the Exome Variant Project were analyzed, focusing on 36 genes known to harbor mutations causing autosomal dominant macular dystrophy.ResultsRates of rare (minor allele frequency ≤0.1%) and private missense variants within autosomal dominant retinal dystrophy genes were found to occur at a high frequency in unaffected individuals, while nonsense variants were not.ConclusionsWe conclude that rare missense variations in most of these genes identified in individuals with retinal dystrophy cannot be confidently classified as disease-causing in the absence of additional information such as linkage or functional validation

    Cataract and optic disk drusen in a patient with glycogenosis and di George syndrome: clinical and molecular report

    Get PDF
    Background We report the ophthalmic findings of a patient with type Ia glycogen storage disease (GSD Ia), DiGeorge syndrome (DGS), cataract and optic nerve head drusen (ONHD). Case presentation A 26-year-old white woman, born at term by natural delivery presented with a post-natal diagnosis of GSD Ia. Genetic testing by array-comparative genomic hybridization (CGH) for DGS was required because of her low levels of serum calcium. The patient has been followed from birth, attending the day-hospital every six months at the San Paolo Hospital, Milan, outpatient clinic for metabolic diseases and previously at another eye center. During the last day-hospital visit, a complete eye examination showed ONHD and cataract in both eyes. Next Generation Sequencing (NGS) was subsequently done to check for any association between the eye problems and metabolic aspects. Conclusions This is the first description of ocular changes in a patient with GSD Ia and DGS. Mutations explaining GSD Ia and DGS were found but no specific causative mutation for cataract and ONHD. The metabolic etiology of her lens changes is known, whereas the pathogenesis of ONHD is not clear. Although the presence of cataract and ONHD could be a coincidence; the case reported could suggest that hypocalcemia due to DGS could be the common biochemical pathway

    Human gene copy number spectra analysis in congenital heart malformations

    Get PDF
    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways

    Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations

    Get PDF
    BACKGROUND: Whole-genome sequencing studies have recently shown that osteosarcomas (OSs) display high rates of structural variation, i.e. they contain many somatic mutations and copy number alterations. TP53 and RB1 show recurrent somatic alterations in concordant studies, suggesting that they could be key players in bone oncogenesis. PATIENTS AND METHODS: we carried out whole-genome sequencing of DNA from seven high-grade OS samples matched with normal tissue from the same patients. RESULTS: We confirmed the presence of genetic alterations of the TP53 (including novel unreported mutations) and RB1 genes. Most interestingly, we identified a total of 84 point mutations and 4 deletions related to 82 different genes in OS samples, of which only 15 have been previously reported. Interestingly, the number of mutated genes (ranging from 4 to 8) was lower in TP53mut cases compared with TP53wt cases (ranging from 14 to 45). This was also true for the mutated RB1 case. We also observed that a dedifferentiated OS harboring MDM2 amplification did not carry any other mutations. CONCLUSION: This study suggests that bone oncogenesis driven by TP53 or RB1 mutations occurs on a background of relative genetic stability and that the dedifferentiated OS subtype represents a clinico-pathological entity with distinct oncogenic mechanisms and thus requires different therapeutic managemen

    Systematic analysis of somatic mutations driving cancer: Uncovering functional protein regions in disease development

    Get PDF
    Background: Recent advances in sequencing technologies enable the large-scale identification of genes that are affected by various genetic alterations in cancer. However, understanding tumor development requires insights into how these changes cause altered protein function and impaired network regulation in general and/or in specific cancer types. Results: In this work we present a novel method called iSiMPRe that identifies regions that are significantly enriched in somatic mutations and short in-frame insertions or deletions (indels). Applying this unbiased method to the complete human proteome, by using data enriched through various cancer genome projects, we identified around 500 protein regions which could be linked to one or more of 27 distinct cancer types. These regions covered the majority of known cancer genes, surprisingly even tumor suppressors. Additionally, iSiMPRe also identified novel genes and regions that have not yet been associated with cancer. Conclusions: While local somatic mutations correspond to only a subset of genetic variations that can lead to cancer, our systematic analyses revealed that they represent an accompanying feature of most cancer driver genes regardless of the primary mechanism by which they are perturbed during tumorigenesis. These results indicate that the accumulation of local somatic mutations can be used to pinpoint genes responsible for cancer formation and can also help to understand the effect of cancer mutations at the level of functional modules in a broad range of cancer driver genes. Reviewers: This article was reviewed by Sándor Pongor, Michael Gromiha and Zoltán Gáspári. © 2016 Mészáros et al

    Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases.

    Get PDF
    PurposeThis study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families.MethodsLarge consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon-intron boundaries of RP1 were sequenced to identify the causal mutation.ResultsThe ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples.ConclusionsThese results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families

    Allelic Expression Imbalance in the Human Retinal Transcriptome and Potential Impact on Inherited Retinal Diseases

    Get PDF
    Inherited retinal diseases (IRDs) are often associated with variable clinical expressivity (VE) and incomplete penetrance (IP). Underlying mechanisms may include environmental, epigenetic, and genetic factors. Cis-acting expression quantitative trait loci (cis-eQTLs) can be implicated in the regulation of genes by favoring or hampering the expression of one allele over the other. Thus, the presence of such loci elicits allelic expression imbalance (AEI) that can be traced by massive parallel sequencing techniques. In this study, we performed an AEI analysis on RNA-sequencing (RNA-seq) data, from 52 healthy retina donors, that identified 194 imbalanced single nucleotide polymorphisms(SNPs) in 67 IRD genes. Focusing on SNPs displaying AEI at a frequency higher than 10%, we found evidence of AEI in several IRD genes regularly associated with IP and VE (BEST1, RP1, PROM1, and PRPH2). Based on these SNPs commonly undergoing AEI, we performed pyrosequencing in an independent sample set of 17 healthy retina donors in order to confirm our findings. Indeed, we were able to validate CDHR1, BEST1, and PROM1 to be subjected to cis-acting regulation. With this work, we aim to shed light on differentially expressed alleles in the human retina transcriptome that, in the context of autosomal dominant IRD cases, could help to explain IP or VE.Peer reviewe
    corecore