9,289 research outputs found

    Adiabatic quantum algorithm for search engine ranking

    Full text link
    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of webpages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top ranked log(n)\log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speedup. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.Comment: 7 pages, 5 figures; closer to published versio

    Efficient packet delivery in modern communication networks

    Get PDF
    Modern communication networks are often designed for diverse applications, such as voice, data and video. Packet-switching is often adapted in today’s networks to transmit multiple types of traffic. In packet-switching networks, network performance is directly affected by how the networks handle their packets. This work addresses the packet-handling issues from the following two aspects: Quality of Service (QoS) and network coding. QoS has been a well-addressed issue in the study of IP-based networks. Generally, nodes in a network need to be informed of the state of each communication link in order to make intelligent decisions to route packets according to their QoS demands. The link state can, however, change rapidly in a network; therefore, nodes would have to receive frequent link state updates in order to maintain the latest link state information at all times. Frequent link state updating is resource-consuming and hence impractical in network design. Therefore, there is a trade-off between the link state updating frequency and the QoS routing performance. It is necessary to design a link state update algorithm that utilizes less frequent link state updates to achieve a high degree of satisfaction in QoS performance. The first part of this work addresses this link state update problem and provides two solutions: ROSE and Smart Packet Marking. ROSE is a class-based link state update algorithm, in which the class boundaries are designed based on the statistical data of users’ QoS requests. By doing so, link state update is triggered only when certain necessary conditions are met. For example, if the available bandwidth of a link is fluctuating within a range that is higher than the highest possible bandwidth request, there is no need to update the state of this link. Smart Packet Marking utilizes a similar concept like ROSE, except that the link state information is carried in the probing packet sent in conjunction with each connection request instead of through link state updates. The second part of this work addresses the packet-handling issue by means of network coding. Instead of the traditional store-and-forward approach, network coding allows intermediate nodes in a multi-hop path to code multiple packets into one in order to reduce bandwidth consumption. The coded packet can later be decoded by its recipients to retrieve the original plain packet. Network coding is found to be beneficial in many network applications. This dissertation makes contributions in network coding in two areas: peer-to-peer file sharing and wireless ad-hoc networks. The benefit of network coding in peer-to-peer file sharing networks is analyzed, and a network coding algorithm – Downloader-Initiated Random Linear Network Coding (DRLNC) – is proposed. DLRNC shifts the coding decision from the seeders to the leechers; by doing so it solves the “collision” problem without increasing the field size. In wireless network coding, this work addresses the implementation difficulty pertaining to MAC layer scheduling. To achieve the ideal network coding gain in wireless networks, it requires perfect MAC layer scheduling. This dissertation first provides an algorithm to solve the ideal-case MAC layer scheduling problem. Since the ideal MAC layer schedule is often difficult to realize, a practical approach is then proposed to increase the network coding performance by modifying the ACK packets in the 802.11 MAC

    Worst-Case Robust Distributed Power Allocation in Shared Unlicensed Spectrum

    Full text link
    This paper considers non-cooperative and fully-distributed power-allocation for selfish transmitter-receiver pairs in shared unlicensed spectrum when normalized-interference to each receiver is uncertain. We model each uncertain parameter by the sum of its nominal (estimated) value and a bounded additive error in a convex set, and show that the allocated power always converges to its equilibrium, called robust Nash equilibrium (RNE). In the case of a bounded and symmetric uncertainty region, we show that the power allocation problem for each user is simplified, and can be solved in a distributed manner. We derive the conditions for RNE's uniqueness and for convergence of the distributed algorithm; and show that the total throughput (social utility) is less than that at NE when RNE is unique. We also show that for multiple RNEs, the social utility may be higher at a RNE as compared to that at the corresponding NE, and demonstrate that this is caused by users' orthogonal utilization of bandwidth at RNE. Simulations confirm our analysis

    Public beliefs and corruption in a repeated psychological game

    Get PDF
    This paper investigates the role of guilt aversion for corruption in public administration. Corruption is modeled as the outcome of a game played between a bureaucrat, a lobby, and the public. There is a moral cost of corruption for the bureaucrat, who is averse to letting the public down. We study how the behavior of the lobby and the bureaucrat depend on perceived public beliefs, when these are constant and when they are allowed to vary over time. With time-varying beliefs, corruption is more likely when the horizon of the game is relatively long and when public beliefs are initially low and are updated fast.psychological games, corruption, bureaucracy, guilt, third party

    Optimization of modal analysis and cross-orthogonality techniques to insure finite element model correlation to test data

    Get PDF
    This work summarizes the views of current authors on the multifaceted problems associated with updating a finite element model with vibration test data. It presents the practical optimization solutions for each step from pre-test analysis, through the actual vibration test, through post-test orthogonality checks and subsequent model correlation

    The Day-to-Day Dynamics of Route Choice

    Get PDF
    This paper reviews methods proposed for modelling the day-to-day dynamics of route choice, on an individual driver level. Extensions to within-day dynamics and choice of departure time are also discussed. A new variation on the approaches reviewed is also described. Simulation tests on a simple two-link network are used to illustrate the approach, and to investigate probabilistic counterparts of equilibrium uniqueness and stability. The long-term plan is for such a day-to-day varying demand-side model to be combined with a suitable microscopic supply-side model, thereby producing a new generation network model. The need for such a model - particularly in the context of assessing real-time transport strategies - has been identified in previous working papers

    Is Structure Necessary for Modeling Argument Expectations in Distributional Semantics?

    Full text link
    Despite the number of NLP studies dedicated to thematic fit estimation, little attention has been paid to the related task of composing and updating verb argument expectations. The few exceptions have mostly modeled this phenomenon with structured distributional models, implicitly assuming a similarly structured representation of events. Recent experimental evidence, however, suggests that human processing system could also exploit an unstructured "bag-of-arguments" type of event representation to predict upcoming input. In this paper, we re-implement a traditional structured model and adapt it to compare the different hypotheses concerning the degree of structure in our event knowledge, evaluating their relative performance in the task of the argument expectations update.Comment: conference paper, IWC
    corecore