3,940,747 research outputs found

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Robust symmetric multiplication for programmable analog VLSI array processing

    Get PDF
    This paper presents an electrically programmable analog multiplier. The circuit performs the multiplication between an input variable and an electrically selectable scaling factor. The multiplier is divided in several blocks: a linearized transconductor, binary weighted current mirrors and a differential to single-ended current adder. This paper shows the advantages introduced using a linearized OTA-based multiplier. The circuit presented renders higher linearity and symmetry in the output current than a previously reported single-transistor multiplier. Its inclusion in an array processor based on CNN allows for a more accurate implementation of the processing model and a more robust weight distribution scheme than those found in previous designs.Office of Naval Research (USA) N-00014- 02-1-0884Ministerio de Ciencia y Tecnología TIC2003-09817-C02-0

    Provable Dynamic Robust PCA or Robust Subspace Tracking

    Full text link
    Dynamic robust PCA refers to the dynamic (time-varying) extension of robust PCA (RPCA). It assumes that the true (uncorrupted) data lies in a low-dimensional subspace that can change with time, albeit slowly. The goal is to track this changing subspace over time in the presence of sparse outliers. We develop and study a novel algorithm, that we call simple-ReProCS, based on the recently introduced Recursive Projected Compressive Sensing (ReProCS) framework. Our work provides the first guarantee for dynamic RPCA that holds under weakened versions of standard RPCA assumptions, slow subspace change and a lower bound assumption on most outlier magnitudes. Our result is significant because (i) it removes the strong assumptions needed by the two previous complete guarantees for ReProCS-based algorithms; (ii) it shows that it is possible to achieve significantly improved outlier tolerance, compared with all existing RPCA or dynamic RPCA solutions by exploiting the above two simple extra assumptions; and (iii) it proves that simple-ReProCS is online (after initialization), fast, and, has near-optimal memory complexity.Comment: Minor writing edits. The paper has been accepted to IEEE Transactions on Information Theor
    corecore