3,940,747 research outputs found
Learning Geometric Concepts with Nasty Noise
We study the efficient learnability of geometric concept classes -
specifically, low-degree polynomial threshold functions (PTFs) and
intersections of halfspaces - when a fraction of the data is adversarially
corrupted. We give the first polynomial-time PAC learning algorithms for these
concept classes with dimension-independent error guarantees in the presence of
nasty noise under the Gaussian distribution. In the nasty noise model, an
omniscient adversary can arbitrarily corrupt a small fraction of both the
unlabeled data points and their labels. This model generalizes well-studied
noise models, including the malicious noise model and the agnostic (adversarial
label noise) model. Prior to our work, the only concept class for which
efficient malicious learning algorithms were known was the class of
origin-centered halfspaces.
Specifically, our robust learning algorithm for low-degree PTFs succeeds
under a number of tame distributions -- including the Gaussian distribution
and, more generally, any log-concave distribution with (approximately) known
low-degree moments. For LTFs under the Gaussian distribution, we give a
polynomial-time algorithm that achieves error , where
is the noise rate. At the core of our PAC learning results is an efficient
algorithm to approximate the low-degree Chow-parameters of any bounded function
in the presence of nasty noise. To achieve this, we employ an iterative
spectral method for outlier detection and removal, inspired by recent work in
robust unsupervised learning. Our aforementioned algorithm succeeds for a range
of distributions satisfying mild concentration bounds and moment assumptions.
The correctness of our robust learning algorithm for intersections of
halfspaces makes essential use of a novel robust inverse independence lemma
that may be of broader interest
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery
PCA is one of the most widely used dimension reduction techniques. A related
easier problem is "subspace learning" or "subspace estimation". Given
relatively clean data, both are easily solved via singular value decomposition
(SVD). The problem of subspace learning or PCA in the presence of outliers is
called robust subspace learning or robust PCA (RPCA). For long data sequences,
if one tries to use a single lower dimensional subspace to represent the data,
the required subspace dimension may end up being quite large. For such data, a
better model is to assume that it lies in a low-dimensional subspace that can
change over time, albeit gradually. The problem of tracking such data (and the
subspaces) while being robust to outliers is called robust subspace tracking
(RST). This article provides a magazine-style overview of the entire field of
robust subspace learning and tracking. In particular solutions for three
problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition
(S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an
entire data vector is either an outlier or an inlier. The S+LR formulation
instead assumes that outliers occur on only a few data vector indices and hence
are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201
Robust symmetric multiplication for programmable analog VLSI array processing
This paper presents an electrically programmable analog multiplier. The circuit performs the multiplication between an input variable and an electrically selectable scaling factor. The multiplier is divided in several blocks: a linearized transconductor, binary weighted current mirrors and a differential to single-ended current adder. This paper shows the advantages introduced using a linearized OTA-based multiplier. The circuit presented renders higher linearity and symmetry in the output current than a previously reported single-transistor multiplier. Its inclusion in an array processor based on CNN allows for a more accurate implementation of the processing model and a more robust weight distribution scheme than those found in previous designs.Office of Naval Research (USA) N-00014- 02-1-0884Ministerio de Ciencia y Tecnología TIC2003-09817-C02-0
Recommended from our members
Robust Incentives
In this paper we consider a moral hazard problem, in which the agent after receiving his wage contract but before undertaking the costly effort can borrow on his future wage earnings. The game between the agent and potential lenders is modelled as an infinite stochastic game with an exogenous stopping probability. We show that the principal cannot design a wage scheme that is robust to hedging by the agent. In particular, we show that, if the exogenous stopping probability is non zero, the principal's wage offer will be followed by several rounds of borrowing by the agent. This is compared to the recontracting-proofness equilibria which most of the literature has concentrated on, assuming that this stopping probability
is zero. Furthermore, we show that the equilibrium of the model with a strictly positive stopping probability does not converge to the equilibrium of the model in which it is zero. We also find that the principal's profit is lower, the maximum wage payment can be higher and effort is lower
Provable Dynamic Robust PCA or Robust Subspace Tracking
Dynamic robust PCA refers to the dynamic (time-varying) extension of robust
PCA (RPCA). It assumes that the true (uncorrupted) data lies in a
low-dimensional subspace that can change with time, albeit slowly. The goal is
to track this changing subspace over time in the presence of sparse outliers.
We develop and study a novel algorithm, that we call simple-ReProCS, based on
the recently introduced Recursive Projected Compressive Sensing (ReProCS)
framework. Our work provides the first guarantee for dynamic RPCA that holds
under weakened versions of standard RPCA assumptions, slow subspace change and
a lower bound assumption on most outlier magnitudes. Our result is significant
because (i) it removes the strong assumptions needed by the two previous
complete guarantees for ReProCS-based algorithms; (ii) it shows that it is
possible to achieve significantly improved outlier tolerance, compared with all
existing RPCA or dynamic RPCA solutions by exploiting the above two simple
extra assumptions; and (iii) it proves that simple-ReProCS is online (after
initialization), fast, and, has near-optimal memory complexity.Comment: Minor writing edits. The paper has been accepted to IEEE Transactions
on Information Theor
- …
