44,813 research outputs found

    Identification of gene expression logical invariants in Arabidopsis.

    Get PDF
    Numerous gene expression datasets from diverse tissue samples from the plant variety Arabidopsis thaliana have been already deposited in the public domain. There have been several attempts to do large scale meta-analyses of all of these datasets. Most of these analyses summarize pairwise gene expression relationships using correlation, or identify differentially expressed genes in two conditions. We propose here a new large scale meta-analysis of the publicly available Arabidopsis datasets to identify Boolean logical relationships between genes. Boolean logic is a branch of mathematics that deals with two possible values. In the context of gene expression datasets we use qualitative high and low expression values. A strong logical relationship between genes emerges if at least one of the quadrants is sparsely populated. We pointed out serious issues in the data normalization steps widely accepted and published recently in this context. We put together a web resource where gene expression relationships can be explored online which helps visualize the logical relationships between genes. We believe that this website will be useful in identifying important genes in different biological context. The web link is http://hegemon.ucsd.edu/plant/

    Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells

    Get PDF
    Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome

    Siah2 control of T-regulatory cells limits anti-tumor immunity.

    Get PDF
    Understanding the mechanisms underlying anti-tumor immunity is pivotal for improving immune-based cancer therapies. Here, we report that growth of BRAF-mutant melanoma cells is inhibited, up to complete rejection, in Siah2-/- mice. Growth-inhibited tumors exhibit increased numbers of intra-tumoral activated T cells and decreased expression of Ccl17, Ccl22, and Foxp3. Marked reduction in Treg proliferation and tumor infiltration coincide with G1 arrest in tumor infiltrated Siah2-/- Tregs in vivo or following T cell stimulation in culture, attributed to elevated expression of the cyclin-dependent kinase inhibitor p27, a Siah2 substrate. Growth of anti-PD-1 therapy resistant melanoma is effectively inhibited in Siah2-/- mice subjected to PD-1 blockade, indicating synergy between PD-1 blockade and Siah2 loss. Low SIAH2 and FOXP3 expression is identified in immune responsive human melanoma tumors. Overall, Siah2 regulation of Treg recruitment and cell cycle progression effectively controls melanoma development and Siah2 loss in the host sensitizes melanoma to anti-PD-1 therapy

    Profiling of RNAs from Human Islet-Derived Exosomes in a Model of Type 1 Diabetes

    Get PDF
    Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of insulin-producing islet β cells. Biomarkers capable of identifying T1D risk and dissecting disease-related heterogeneity represent an unmet clinical need. Toward the goal of informing T1D biomarker strategies, we profiled coding and noncoding RNAs in human islet-derived exosomes and identified RNAs that were differentially expressed under proinflammatory cytokine stress conditions. Human pancreatic islets were obtained from cadaveric donors and treated with/without IL-1β and IFN-γ. Total RNA and small RNA sequencing were performed from islet-derived exosomes to identify mRNAs, long noncoding RNAs, and small noncoding RNAs. RNAs with a fold change ≥1.3 and a p-value <0.05 were considered as differentially expressed. mRNAs and miRNAs represented the most abundant long and small RNA species, respectively. Each of the RNA species showed altered expression patterns with cytokine treatment, and differentially expressed RNAs were predicted to be involved in insulin secretion, calcium signaling, necrosis, and apoptosis. Taken together, our data identify RNAs that are dysregulated under cytokine stress in human islet-derived exosomes, providing a comprehensive catalog of protein coding and noncoding RNAs that may serve as potential circulating biomarkers in T1D

    Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas

    Get PDF
    Pilocytic astrocytomas represent the most common glioma subtype in young patients and account for 5.4% of all gliomas. They are characterized by alterations in the RAS–MAP kinase pathway, the most frequent being a tandem duplication on chromosome 7q34 involving the BRAF gene, resulting in oncogenic BRAF fusion proteins. BRAF fusion involving the KIAA1549 gene is a hallmark of pilocytic astrocytoma, but it has also been recorded in rare cases of gangliogliomas, 1p/19q co-deleted oligodendroglial tumors, and it is also a common feature of disseminated oligodendroglial-like leptomeningeal neoplasm. In some difficult cases, evidence for KIAA1549-BRAF fusion is of utmost importance for the diagnosis. Moreover, because the KIAA1549-BRAF fusion constitutively activates the MAP kinase pathway, it represents a target for drugs such as MEK inhibitors, and therefore, the detection of this genetic abnormality is highly relevant in the context of clinical trials applying such new approaches. In the present study, we aimed to use the high sensitivity of Droplet Digital PCR (DDPCR™) to predict KIAA1549-BRAF fusion on very small amounts of formalin-fixed paraffin-embedded tissue in routine practice. Therefore, we analyzed a training cohort of 55 pilocytic astrocytomas in which the KIAA1549-BRAF fusion status was known by RNA sequencing used as our gold standard technique. Then, we analyzed a prospective cohort of 40 pilocytic astrocytomas, 27 neuroepithelial tumors remaining difficult to classify (pilocytic astrocytoma versus ganglioglioma or diffuse glioma), 15 dysembryoplastic neuroepithelial tumors, and 18 gangliogliomas. We could demonstrate the usefulness and high accuracy (100% sensitivity and specificity when compared to RNA sequencing) of DDPCR™ to assess the KIAA1549-BRAF fusion from very low amounts of DNA isolated from formalin-fixed paraffin-embedded specimens. BRAF duplication is both necessary and sufficient to predict this fusion in most cases and we propose that this single analysis could be used in routine practice to save time, money, and precious tissue

    Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis.

    Get PDF
    BackgroundAlthough much is known about the mechanism of action of Bacillus thuringiensis Cry toxins, the target tissue cellular responses to toxin activity is less understood. Previous transcriptomic studies indicated that significant changes in gene expression occurred during intoxication. However, most of these studies were done in organisms without a sequenced and annotated reference genome. A reference genome and transcriptome is available for the mosquito Aedes aegypti, and its importance as a disease vector has positioned its biological control as a primary health concern. Through RNA sequencing we sought to determine the transcriptional changes observed during intoxication by Cry11Aa in A. aegypti and to analyze possible defense and recovery mechanisms engaged after toxin ingestion.ResultsIn this work the changes in the transcriptome of 4(th) instar A. aegypti larvae exposed to Cry11Aa toxin for 0, 3, 6, 9, and 12 h were analyzed. A total of 1060 differentially expressed genes after toxin ingestion were identified with two bioconductoR packages: DESeq2 and EdgeR. The most important transcriptional changes were observed after 9 or 12 h of toxin exposure. GO enrichment analysis of molecular function and biological process were performed as well as Interpro protein functional domains and pBLAST analyses. Up regulated processes include vesicular trafficking, small GTPase signaling, MAPK pathways, and lipid metabolism. In contrast, down regulated functions are related to transmembrane transport, detoxification mechanisms, cell proliferation and metabolism enzymes. Validation with RT-qPCR showed large agreement with Cry11Aa intoxication since these changes were not observed with untreated larvae or larvae treated with non-toxic Cry11Aa mutants, indicating that a fully functional pore forming Cry toxin is required for the observed transcriptional responses.ConclusionsThis study presents the first transcriptome of Cry intoxication response in a fully sequenced insect, and reveals possible conserved cellular processes that enable larvae to contend with Cry intoxication in the disease vector A. aegypti. We found some similarities of the mosquito responses to Cry11Aa toxin with previously observed responses to other Cry toxins in different insect orders and in nematodes suggesting a conserved response to pore forming toxins. Surprisingly some of these responses also correlate with transcriptional changes observed in Bti-resistant and Cry11Aa-resistant mosquito larvae

    An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed

    Get PDF
    Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population
    corecore