3,540 research outputs found

    RNA Modification in Inflammatory Bowel Diseases

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches

    Molecular basis of cobalamin-dependent RNA modification

    Get PDF
    Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis. Our structure of QueG bound to a tRNA[superscript Tyr] anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site. We find Q bound directly above the Cbl, consistent with a reaction mechanism that involves the formation of a covalent Cbl-tRNA intermediate. Using protein film electrochemistry, we show that two [4Fe-4S] clusters adjacent to the Cbl have redox potentials in the range expected for Cbl reduction, suggesting how Cbl can be activated for nucleophilic attack on oQ. Together, these structural and electrochemical data inform our understanding of Cbl dependent nucleic acid modification.National Science Foundation (U.S.) (MCB 1122977)National Institutes of Health (U.S.) (GM72623 S01, GM120283, and GM17151

    MODOMICS: a database of RNA modification pathways

    Get PDF
    MODOMICS is the first comprehensive database resource for systems biology of RNA modification. It integrates information about the chemical structure of modified nucleosides, their localization in RNA sequences, pathways of their biosynthesis and enzymes that carry out the respective reactions. MODOMICS also provides literature information, and links to other databases, including the available protein sequence and structure data. The current list of modifications and pathways is comprehensive, while the dataset of enzymes is limited to Escherichia coli and Saccharomyces cerevisiae and sequence alignments are presented only for tRNAs from these organisms. RNAs and enzymes from other organisms will be included in the near future. MODOMICS can be queried by the type of nucleoside (e.g. A, G, C, U, I, m(1)A, nm(5)s(2)U, etc.), type of RNA, position of a particular nucleoside, type of reaction (e.g. methylation, thiolation, deamination, etc.) and name or sequence of an enzyme of interest. Options for data presentation include graphs of pathways involving the query nucleoside, multiple sequence alignments of RNA sequences and tabular forms with enzyme and literature data. The contents of MODOMICS can be accessed through the World Wide Web at

    Developing new methods for specific RNA modification

    Get PDF
    Ribonucleic acids (RNAs), and messenger RNAs (mRNAs) in particular, have the potential to play a leading role in future therapeutic research. During the SARS-CoV-2 pandemic, mRNA vaccines have proven useful and highly effective. Therefore, it is of great interest to further investigate RNA and to broaden the current knowledge about RNA function, structure as well as modifications and their effects. Expansion of the genetic alphabet by use of unnatural bases (UB) can contribute to this, both by modifying RNA and extracting new information from the modified RNA. In this thesis, unnatural base modifications were utilized for site-specific introduction of various functionalities into different RNA sequences. A valuable contribution was made towards structure elucidation of the non-coding and complex folded regulatory Xist A repeat region. Here, incorporation of UB-attached nitroxide spin labels enabled inter-spin distance measurements and thus support for a previously proposed structure by targeting different labeling positions. Multifaceted analysis of cellular applications was presented for protein coding mRNA sequences carrying cyclopropene (CP)-functionalized UB modifications in their 3ā€²-untranslated regions. Employing inverse electron demand Diels-Alder click chemistry, live-cell labeling of CP-modified mRNAs with tetrazine-conjugated fluorophores allowed excellent spatiotemporal mRNA visualization in cells. In addition, highly modified mRNA sequences with a combination of site-specific unnatural and random positioned natural base modifications were investigated regarding their influence on mRNA stability and functionality. A combined temporal quantification was performed for cellular mRNA levels and cellular expression of the mRNA encoded reporter protein. The combination of unnatural and natural base modifications was shown to synergistically improve both mRNA stability in cells and cellular protein expression through outstanding mRNA translation efficiency. Briefly, UB modifications proved advantageous for research on both coding and non-coding RNA. Moreover, site-specific UB modifications facilitated non-disruptive investigations on different parameters such as structure, function and visualization of RNA. The applications and methods developed in this thesis will support future RNA research and therapeutic development

    Characterising the RNA modification and polyadenylation landscape at single molecule resolution using third-generation sequencing technologies

    Full text link
    RNA modifications, collectively referred to as the ā€˜epitranscriptomeā€™, are not mere decorations of RNA molecules, but can be dynamically regulated upon environmental queues and changes in cellular conditions. This dynamic behaviour is achieved through the RNA modification machinery, which comprises ā€œwriterā€, ā€œreaderā€ and ā€œeraserā€ proteins that modify, recognize and remove the modification, respectively. Chapter1 presents a comprehensive analysis of the RNA modification machinery (readers, writers and erasers) across species, tissues and cancer types, revealing gene duplications during eukaryotic evolution, changes in substrate specificity and tissue- and cancer-specific expression patterns. Chapters 2 and 3 presents the exploration and development of novel methods to map and analyze RNA modifications transcriptome-wide. Nanopore direct-RNA sequencing technology was used to provide RNA modification maps in full-length native RNA molecules. Firstly, it is shown that RNA modifications can be detected in the form of base-calling ā€˜errorsā€™, thus allowing us to train Support Vector Machine models that can distinguish m6A-modified from unmodified sites, both in vitro and in vivo. Secondly, it is demonstrated that distinct RNA modification types have unique base-calling ā€˜errorā€™ signatures, allowing us to exploit these signatures to distinguish different RNA modification types. It is found that pseudouridine has one of the most distinct signatures, appearing in the form of C-to-U mismatches. Finally, this information was used to predict novel pseudouridine sites on ncRNAs and mRNAs transcriptome-wide, as well as to obtain quantitative measurements of the stoichiometry of modified sites. Chapter 4 presents the development of a novel nanopore-based method, which is termed ā€˜Nano3P-seqā€™, to simultaneously quantify RNA abundance and tail length dynamics in individual molecules in both the coding and non-coding transcriptome, from cDNA reads. It is demonstrated that Nano3P-seq offers a simple approach to study the coding and non-coding transcriptome at single molecule resolution regardless of the tail ends. Together, this work provides a comprehensive framework for the study of RNA modifications and polyA tail dynamics using third generation sequencing technologies, opening novel avenues for future works that aim to characterize their dynamics and biological roles both in health and in disease

    The RNA modification database, RNAMDB: 2011 update

    Get PDF
    Since its inception in 1994, The RNA Modification Database (RNAMDB, http://rna-mdb.cas.albany.edu/RNAmods/) has served as a focal point for information pertaining to naturally occurring RNA modifications. In its current state, the database employs an easy-to-use, searchable interface for obtaining detailed data on the 109 currently known RNA modifications. Each entry provides the chemical structure, common name and symbol, elemental composition and mass, CA registry numbers and index name, phylogenetic source, type of RNA species in which it is found, and references to the first reported structure determination and synthesis. Though newly transferred in its entirety to The RNA Institute, the RNAMDB continues to grow with two notable additions, agmatidine and 8-methyladenosine, appended in the last year. The RNA Modification Database is staying up-to-date with significant improvements being prepared for inclusion within the next year and the following year. The expanded future role of The RNA Modification Database will be to serve as a primary information portal for researchers across the entire spectrum of RNA-related research

    Protein-RNA interactions: a structural analysis

    Get PDF
    A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level

    Mass Spectrometry: An Ideal Method For Rna Modification Analysis

    Get PDF
    Currently there is no good way to measure and find the exact location of multiple RNA modifications. Existing technology can effectively find single varieties of modifications, but cannot identify co-occurrence. As the field of proteomics has shown, mass spectrometry is a powerful and versatile technique assessing broad ranges of chemical modifications in the context of the cellular environment. In this project I used our expertise in proteomics to build a mass spectrometry based platform for identifying RNA modifications. I have since set up both software and analytical platforms querying RNA modifications, and used this platform to survey human tRNA samples and identify what modifications there are, and where they occur

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Ī”1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Ī”1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis
    • ā€¦
    corecore