586,424 research outputs found

    Polymorphism identification and improved genome annotation of Brassica rapa through Deep RNA sequencing.

    Get PDF
    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes-R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)-using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/

    Detection of DNA-RNA hybrids in vivo

    Get PDF
    DNA-RNA hybrids form naturally during essential cellular functions such as transcription and replication. However, they may be an important source of genome instability, a hallmark of cancer and genetic diseases. Detection of DNA-RNA hybrids in cells is becoming crucial to understand an increasing number of molecular biology processes in genome dynamics and function and to identify new factors and mechanisms responsible for disease in biomedical research. Here, we describe two different procedures for the reliable detection of DNA-RNA hybrids in the yeast Saccharomyces cerevisiae and in human cells: DNA-RNA Immunoprecipitation (DRIP) and Immunofluorescence

    Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics.

    Get PDF
    We demonstrate the first integrated microfluidic tmRNA purification and nucleic acid sequence-based amplification (NASBA) device incorporating real-time detection. The real-time amplification and detection step produces pathogen-specific response in < 3 min from the chip-purified RNA from 100 lysed bacteria. On-chip RNA purification uses a new silica bead immobilization method. On-chip amplification uses custom-designed high-selectivity primers and real-time detection uses molecular beacon fluorescent probe technology; both are integrated on-chip with NASBA. Present in all bacteria, tmRNA (10Sa RNA) includes organism-specific identification sequences, exhibits unusually high stability relative to mRNA, and has high copy number per organism; the latter two factors improve the limit of detection, accelerate time-to-positive response, and suit this approach ideally to the detection of small numbers of bacteria. Device efficacy was demonstrated by integrated on-chip purification, amplification, and real-time detection of 100 E. coli bacteria in 100 microL of crude lysate in under 30 min for the entire process

    Developing an Analytical Method for Separating and Quantifying RNA Generated in In Vitro Transcription Reactions

    Get PDF
    The generation of run-off transcripts from in vitro transcription reactions is a useful technique in the study of transcription regulation. There are currently limited ways in which these run-off transcripts can be analyzed, and few that are truly quantitative. Our aim is to establish a method using ion-pair reverse phase high performance liquid chromatography (IP RP HPLC) to analyze RNA transcripts from in vitro transcription reactions. We were able to demonstrate that we could recapitulate the separation of DNA based on size using our IP RP HPLC method. The application of this method was also able to effectively separate RNA based on size in the size range of 281 – 1908 bp. Using a simple in vitro transcription system with T7 RNA polymerase and a linear DNA template with a single promoter, we showed detection of the RNA run-off transcript in the size range demonstrated. We would like to apply this method to more complex in vitro transcription systems and demonstrate the ability to quantify RNA using IP RP HPLC

    Detecting differential usage of exons from RNA-Seq data

    Get PDF
    RNA-Seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires comparisons between treatments, tissues or conditions. For the analysis of such experiments, we present _DEXSeq_, a statistical method to test for differential exon usage in RNA-Seq data. _DEXSeq_ employs generalized linear models and offers good detection power and reliable control of false discoveries by taking biological variation into account. An implementation is available as an R/Bioconductor package

    Stable isotope probing: Technical considerations when resolving ¹⁵N-labeled RNA in gradients

    Get PDF
    RNA based stable isotope probing (SIP) facilitates the detection and identification of active members of microbial populations that are involved in the assimilation of an isotopically labeled compound. ¹⁵N-RNA-SIP is a new method that has been discussed in recent literature but has not yet been tested. Herein, we define the limitations to using ¹⁵N-labeled substrates for SIP and propose modifications to compensate for some of these shortcomings. We have used ¹⁵N-RNA-SIP as a tool for analysing mixed bacterial populations that use nitrogen substrates. After incubating mixed microbial communities with ¹⁵N-ammonium chloride or ¹⁵N₂ we assessed the fractionation resolution of ¹⁵N-RNA by isopycnic centrifugation in caesium trifluoroacetate (CsTFA) gradients. We found that the more isotopic label incorporated, the further the buoyant density (BD) separation between ¹⁵N- and ¹⁴N-RNA, however it was not possible to resolve the labeled from unlabeled RNA definitively through gradient fractionation. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of the extracted RNA and fluorescent in situ hybridisation (FISH) analysis of the enrichment cultures provided some insight into the organisms involved in nitrogen fixation. This approach is not without its limitations and will require further developments to assess its applicability to other nitrogen-fixing environments

    Nanomolecular detection of human influenza virus type A using reverse transcription loop-mediated isothermal amplification assisted with rod-shaped gold nanoparticles

    Get PDF
    Reverse transcription loop-mediated isothermal amplification (RT-LAMP) and rod-shaped gold nanoparticles (gold nanorods; GNRs) were employed for nanomolecular detection of human influenza virus type A RNA. After cDNA synthesis from the RNA, the primers targeting the M protein gene were used for LAMP amplification. A blue shift from red to purple from the GNR inserting into the LAMP-DNAs can be seen by the naked eye. Transmission electron microscopy revealed the formation GNR aggregates due to their interactions with LAMP DNA. One pg RNA (10-3 dilution of the viral cDNA) was detected using this colorimetric test. The nanomolecular test showed 100% sensitivity and 95.8% specificity in comparison to results by RT-PCR. Also, the test indicated 100% sensitivity and 100% specificity in comparison to results by RT-LAMP. The described nanomolecular test could detect human influenza virus type A RNA in nearly 1 hour. This journal is © the Partner Organisations 2014

    Optimizing Splicing Junction Detection in Next Generation Sequencing Data on a Virtual-GRID Infrastructure

    Get PDF
    The new protocol for sequencing the messenger RNA in a cell, named RNA-seq produce millions of short sequence fragments. Next Generation Sequencing technology allows more accurate analysis but increase needs in term of computational resources. This paper describes the optimization of a RNA-seq analysis pipeline devoted to splicing variants detection, aimed at reducing computation time and providing a multi-user/multisample environment. This work brings two main contributions. First, we optimized a well-known algorithm called TopHat by parallelizing some sequential mapping steps. Second, we designed and implemented a hybrid virtual GRID infrastructure allowing to efficiently execute multiple instances of TopHat running on different samples or on behalf of different users, thus optimizing the overall execution time and enabling a flexible multi-user environmen
    corecore