564,938 research outputs found

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing

    Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells.

    Get PDF
    MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed \u27small RNA zipper\u27. It is designed to connect miRNA molecules end to end, forming a DNA-RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30-50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes

    RNA Interference by Single- and Double-stranded siRNA With a DNA Extension Containing a 3′ Nuclease-resistant Mini-hairpin Structure

    Get PDF
    Selective gene silencing by RNA interference (RNAi) involves double-stranded small interfering RNA (ds siRNA) composed of single-stranded (ss) guide and passenger RNAs. siRNA is recognized and processed by Ago2 and C3PO, endonucleases of the RNA-induced silencing complex (RISC). RISC cleaves passenger RNA, exposing the guide RNA for base-pairing with its homologous mRNA target. Remarkably, the 3' end of passenger RNA can accommodate a DNA extension of 19-nucleotides without loss of RNAi function. This construct is termed passenger-3'-DNA/ds siRNA and includes a 3'-nuclease-resistant mini-hairpin structure. To test this novel modification further, we have now compared the following constructs: (I) guide-3'-DNA/ds siRNA, (II) passenger-3'-DNA/ds siRNA, (III) guide-3'-DNA/ss siRNA, and (IV) passenger-3'-DNA/ss siRNA. The RNAi target was SIRT1, a cancer-specific survival factor. Constructs I-III each induced selective knock-down of SIRT1 mRNA and protein in both noncancer and cancer cells, accompanied by apoptotic cell death in the cancer cells. Construct IV, which lacks the SIRT1 guide strand, had no effect. Importantly, the 3'-DNA mini-hairpin conferred nuclease resistance to constructs I and II. Resistance required the double-stranded RNA structure since single-stranded guide-3'-DNA/ss siRNA (construct III) was susceptible to serum nucleases with associated loss of RNAi activity. The potential applications of 3'-DNA/siRNA constructs are discussed. Molecular Therapy-Nucleic Acids (2014) 2, e141; doi:10.1038/mtna.2013.68; published online 7 January 2014

    The importance of circulating tumor products as „liquid biopsies” in colorectal cancer

    Get PDF
    Liquid biopsies represent an array of plasma analysis tests that are studied to evaluate and identify circulating tumor products, especially circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Examining such biomarkers in the plasma of colorectal cancer patients has attracted attention due to its clinical significance in the treatment of malignant diseases. Given that tissue samples are sometimes challenging to procure or unsatisfactory for genomic profiling from patients with colorectal cancer, trustworthy biomarkers are mandatory for guiding treatment, monitoring therapeutic response, and detecting recurrence. This review considers the relevance of flowing tumor products like circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating messenger RNA (mRNA), circulating micro RNA (miRNA), circulating exosomes, and tumor educated platelets (TEPs) for patients with colorectal cancer

    RNA Interference by Single- and Double-stranded siRNA With a DNA Extension Containing a 3′ Nuclease-resistant Mini-hairpin Structure

    Get PDF
    Selective gene silencing by RNA interference (RNAi) involves double-stranded small interfering RNA (ds siRNA) composed of single-stranded (ss) guide and passenger RNAs. siRNA is recognized and processed by Ago2 and C3PO, endonucleases of the RNA-induced silencing complex (RISC). RISC cleaves passenger RNA, exposing the guide RNA for base-pairing with its homologous mRNA target. Remarkably, the 3' end of passenger RNA can accommodate a DNA extension of 19-nucleotides without loss of RNAi function. This construct is termed passenger-3'-DNA/ds siRNA and includes a 3'-nuclease-resistant mini-hairpin structure. To test this novel modification further, we have now compared the following constructs: (I) guide-3'-DNA/ds siRNA, (II) passenger-3'-DNA/ds siRNA, (III) guide-3'-DNA/ss siRNA, and (IV) passenger-3'-DNA/ss siRNA. The RNAi target was SIRT1, a cancer-specific survival factor. Constructs I-III each induced selective knock-down of SIRT1 mRNA and protein in both noncancer and cancer cells, accompanied by apoptotic cell death in the cancer cells. Construct IV, which lacks the SIRT1 guide strand, had no effect. Importantly, the 3'-DNA mini-hairpin conferred nuclease resistance to constructs I and II. Resistance required the double-stranded RNA structure since single-stranded guide-3'-DNA/ss siRNA (construct III) was susceptible to serum nucleases with associated loss of RNAi activity. The potential applications of 3'-DNA/siRNA constructs are discussed. Molecular Therapy-Nucleic Acids (2014) 2, e141; doi:10.1038/mtna.2013.68; published online 7 January 2014

    RNA Vaccine: novel approach for cancer treatment

    Get PDF
    Cancer is still an unsolved puzzle and a major cause of mortality and morbidity in the world. Today, about one in every thousand people is dying due to cancer. No effective agent has yet been found which can cure cancer in its metastatic stage. However, attempts in the shape of chemotherapy, immunotherapy and vaccines are made worldwide to find a remedy through a proper regimen. In continuation, tumor specific mRNA has been introduced as part of vaccines in recent days. It is mostly used in transfection with Dendritic Cells (DCs) for better effectiveness and safety. The DCs are selected for transfection because they are highly potent Antigen Presenting Cells (APCs) with the ability to take up & process tumor antigen in peripheral blood & tissues and can also migrate to the draining lymph nodes to present antigen to naïve T lymphocytes & induce the immune response.
Although initially the RNA vaccination was administered alone, due to its unstable and easily degradable nature, it was found to be quite less effective, which led it to be used in combination with some stability enhancers’ viz. RNA packaging in liposomes. They not only increased its stability, but even worked as active immune stimulators as well. RNA could remain stable. Although it showed significant promise in cancer treatment, immune suppression was noticed after vaccination. To enhance the effectiveness it is now being used in combination with few drugs viz. SUNITINIB which can reduce the suppressive effect of suppressor cells. It might be a good choice for combined therapy with RNA vaccine.
&#xa

    Long noncoding RNAs in prostate cancer: overview and clinical implications.

    Get PDF
    Prostate cancer is the second most common cause of cancer mortality among men in the United States. While many prostate cancers are indolent, an important subset of patients experiences disease recurrence after conventional therapy and progresses to castration-resistant prostate cancer (CRPC), which is currently incurable. Thus, there is a critical need to identify biomarkers that will distinguish indolent from aggressive disease, as well as novel therapeutic targets for the prevention or treatment of CRPC. In recent years, long noncoding RNAs (lncRNAs) have emerged as an important class of biological molecules. LncRNAs are polyadenylated RNA species that share many similarities with protein-coding genes despite the fact that they are noncoding (not translated into proteins). They are usually transcribed by RNA polymerase II and exhibit the same epigenetic signatures as protein-coding genes. LncRNAs have also been implicated in the development and progression of variety of cancers, including prostate cancer. While a large number of lncRNAs exhibit tissue- and cancer-specific expression, their utility as diagnostic and prognostic biomarkers is just starting to be explored. In this review, we highlight recent findings on the functional role and molecular mechanisms of lncRNAs in the progression of prostate cancer and evaluate their use as potential biomarkers and therapeutic targets

    Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein

    Get PDF
    The oncogenic MUC1-C subunit is aberrantly overexpressed in most human breast cancers by mechanisms that are not well understood. The present studies demonstrate that stimulation of non- malignant MCF-10A cells with epidermal growth factor (EGF) or heregulin (HRG) results in marked upregulation of MUC1-C translation. Growth factor-induced MUC1-C translation was found to be mediated by PI3K->AKT, and not MEK->ERK1/2, signaling. We also show that activation of the mTORC1->S6K1 pathway decreases PDCD4, an inhibitor of the eIF4A RNA helicase, and contributes to the induction of MUC1-C translation. In concert with these results, treatment of growth factor-stimulated MCF-10A cells with the eIF4A RNA helicase inhibitors, silvestrol and CR-1-31-B, blocked increases in MUC1-C abundance. The functional significance of the increase in MUC1-C translation is supported by the demonstration that MUC1-C, in turn, forms complexes with EGFR and promotes EGFR-mediated activation of the PI3K->AKT pathway and the induction of growth. Compared to MCF-10A cells, constitutive overexpression of MUC1-C in breast cancer cells was unaffected by EGF stimulation, but was blocked by inhibiting PI3K->AKT signaling. The overexpression of MUC1-C in breast cancer cells was also inhibited by blocking eIF4A RNA helicase activity with silvestrol and CR-1-31-B. These findings indicate that EGF-induced MUC1-C expression is mediated by the PI3K->AKT pathway and the eIF4A RNA helicase, and that this response promotes EGFR signaling in an autoinductive loop. The findings also indicate that targeting the eIF4A RNA helicase is a novel approach for blocking MUC1-C overexpression in breast cancer cells.P50 CA100707 - NCI NIH HHS; R01 CA042802 - NCI NIH HHS; R01 CA097098 - NCI NIH HHS; R01 GM073855 - NIGMS NIH HH

    ROCK signalling induced gene expression changes in mouse pancreatic ductal adenocarcinoma cells

    Get PDF
    The RhoA and RhoC GTPases act via the ROCK1 and ROCK2 kinases to promote actomyosin contraction, resulting in directly induced changes in cytoskeleton structures and altered gene transcription via several possible indirect routes. Elevated activation of the Rho/ROCK pathway has been reported in several diseases and pathological conditions, including disorders of the central nervous system, cardiovascular dysfunctions and cancer. To determine how increased ROCK signalling affected gene expression in pancreatic ductal adenocarcinoma (PDAC) cells, we transduced mouse PDAC cell lines with retroviral constructs encoding fusion proteins that enable conditional activation of ROCK1 or ROCK2, and subsequently performed RNA sequencing (RNA-Seq) using the Illumina NextSeq 500 platform. We describe how gene expression datasets were generated and validated by comparing data obtained by RNA-Seq with RT-qPCR results. Activation of ROCK1 or ROCK2 signalling induced significant changes in gene expression that could be used to determine how actomyosin contractility influences gene transcription in pancreatic cancer
    corecore