32,844 research outputs found

    CrocoPat 2.1 Introduction and Reference Manual

    Full text link
    CrocoPat is an efficient, powerful and easy-to-use tool for manipulating relations of arbitrary arity, including directed graphs. This manual provides an introduction to and a reference for CrocoPat and its programming language RML. It includes several application examples, in particular from the analysis of structural models of software systems.Comment: 19 pages + cover, 2 eps figures, uses llncs.cls and cs_techrpt_cover.sty, for downloading the source code, binaries, and RML examples, see http://www.software-systemtechnik.de/CrocoPat

    Human mobility monitoring in very low resolution visual sensor network

    Get PDF
    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics

    Bounded Quantifier Instantiation for Checking Inductive Invariants

    Full text link
    We consider the problem of checking whether a proposed invariant φ\varphi expressed in first-order logic with quantifier alternation is inductive, i.e. preserved by a piece of code. While the problem is undecidable, modern SMT solvers can sometimes solve it automatically. However, they employ powerful quantifier instantiation methods that may diverge, especially when φ\varphi is not preserved. A notable difficulty arises due to counterexamples of infinite size. This paper studies Bounded-Horizon instantiation, a natural method for guaranteeing the termination of SMT solvers. The method bounds the depth of terms used in the quantifier instantiation process. We show that this method is surprisingly powerful for checking quantified invariants in uninterpreted domains. Furthermore, by producing partial models it can help the user diagnose the case when φ\varphi is not inductive, especially when the underlying reason is the existence of infinite counterexamples. Our main technical result is that Bounded-Horizon is at least as powerful as instrumentation, which is a manual method to guarantee convergence of the solver by modifying the program so that it admits a purely universal invariant. We show that with a bound of 1 we can simulate a natural class of instrumentations, without the need to modify the code and in a fully automatic way. We also report on a prototype implementation on top of Z3, which we used to verify several examples by Bounded-Horizon of bound 1

    On estimation of the diagonal elements of a sparse precision matrix

    Full text link
    In this paper, we present several estimators of the diagonal elements of the inverse of the covariance matrix, called precision matrix, of a sample of iid random vectors. The focus is on high dimensional vectors having a sparse precision matrix. It is now well understood that when the underlying distribution is Gaussian, the columns of the precision matrix can be estimated independently form one another by solving linear regression problems under sparsity constraints. This approach leads to a computationally efficient strategy for estimating the precision matrix that starts by estimating the regression vectors, then estimates the diagonal entries of the precision matrix and, in a final step, combines these estimators for getting estimators of the off-diagonal entries. While the step of estimating the regression vector has been intensively studied over the past decade, the problem of deriving statistically accurate estimators of the diagonal entries has received much less attention. The goal of the present paper is to fill this gap by presenting four estimators---that seem the most natural ones---of the diagonal entries of the precision matrix and then performing a comprehensive empirical evaluation of these estimators. The estimators under consideration are the residual variance, the relaxed maximum likelihood, the symmetry-enforced maximum likelihood and the penalized maximum likelihood. We show, both theoretically and empirically, that when the aforementioned regression vectors are estimated without error, the symmetry-enforced maximum likelihood estimator has the smallest estimation error. However, in a more realistic setting when the regression vector is estimated by a sparsity-favoring computationally efficient method, the qualities of the estimators become relatively comparable with a slight advantage for the residual variance estimator.Comment: Companion R package at http://cran.r-project.org/web/packages/DESP/index.htm

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    Metropolized Randomized Maximum Likelihood for sampling from multimodal distributions

    Full text link
    This article describes a method for using optimization to derive efficient independent transition functions for Markov chain Monte Carlo simulations. Our interest is in sampling from a posterior density π(x)\pi(x) for problems in which the dimension of the model space is large, π(x)\pi(x) is multimodal with regions of low probability separating the modes, and evaluation of the likelihood is expensive. We restrict our attention to the special case for which the target density is the product of a multivariate Gaussian prior and a likelihood function for which the errors in observations are additive and Gaussian

    User's guide to the Reliability Estimation System Testbed (REST)

    Get PDF
    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors
    corecore