346 research outputs found

    Whether and Where to Code in the Wireless Relay Channel

    Full text link
    The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception energies. We show that coding at the relay alone while operating in a rateless fashion is neither throughput nor energy efficient. Given a set of system parameters, our analysis determines the optimal amount of time the relay should participate in the transmission, and where coding should be performed.Comment: 11 pages, 12 figures, to be published in the IEEE JSAC Special Issue on Theories and Methods for Advanced Wireless Relay

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Agile Data Offloading over Novel Fog Computing Infrastructure for CAVs

    Full text link
    Future Connected and Automated Vehicles (CAVs) will be supervised by cloud-based systems overseeing the overall security and orchestrating traffic flows. Such systems rely on data collected from CAVs across the whole city operational area. This paper develops a Fog Computing-based infrastructure for future Intelligent Transportation Systems (ITSs) enabling an agile and reliable off-load of CAV data. Since CAVs are expected to generate large quantities of data, it is not feasible to assume data off-loading to be completed while a CAV is in the proximity of a single Road-Side Unit (RSU). CAVs are expected to be in the range of an RSU only for a limited amount of time, necessitating data reconciliation across different RSUs, if traditional approaches to data off-load were to be used. To this end, this paper proposes an agile Fog Computing infrastructure, which interconnects all the RSUs so that the data reconciliation is solved efficiently as a by-product of deploying the Random Linear Network Coding (RLNC) technique. Our numerical results confirm the feasibility of our solution and show its effectiveness when operated in a large-scale urban testbed.Comment: To appear in IEEE VTC-Spring 201

    Fulcrum: Flexible Network Coding for Heterogeneous Devices

    Get PDF
    Producción CientíficaWe introduce Fulcrum, a network coding framework that achieves three seemingly conflicting objectives: 1) to reduce the coding coefficient overhead down to nearly n bits per packet in a generation of n packets; 2) to conduct the network coding using only Galois field GF(2) operations at intermediate nodes if necessary, dramatically reducing computing complexity in the network; and 3) to deliver an end-to-end performance that is close to that of a high-field network coding system for high-end receivers, while simultaneously catering to low-end receivers that decode in GF(2). As a consequence of 1) and 3), Fulcrum has a unique trait missing so far in the network coding literature: providing the network with the flexibility to distribute computational complexity over different devices depending on their current load, network conditions, or energy constraints. At the core of our framework lies the idea of precoding at the sources using an expansion field GF(2 h ), h > 1, to increase the number of dimensions seen by the network. Fulcrum can use any high-field linear code for precoding, e.g., Reed-Solomon or Random Linear Network Coding (RLNC). Our analysis shows that the number of additional dimensions created during precoding controls the trade-off between delay, overhead, and computing complexity. Our implementation and measurements show that Fulcrum achieves similar decoding probabilities as high field RLNC but with encoders and decoders that are an order of magnitude faster.Green Mobile Cloud project (grant DFF-0602-01372B)Colorcast project (grant DFF-0602-02661B)TuneSCode project (grant DFF - 1335-00125)Danish Council for Independent Research (grant DFF-4002-00367)Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grants MTM2012-36917-C03-03 / MTM2015-65764-C3-2-P / MTM2015-69138-REDT)Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC-2016-20208)Aarhus Universitets Forskningsfond Starting (grant AUFF-2017-FLS-7-1
    corecore