6 research outputs found

    Pointwise Convolutional Neural Networks

    Full text link
    Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network is pointwise convolution, a new convolution operator that can be applied at each point of a point cloud. Our fully convolutional network design, while being surprisingly simple to implement, can yield competitive accuracy in both semantic segmentation and object recognition task.Comment: 10 pages, 6 figures, 10 tables. Paper accepted to CVPR 201

    RGB-D to CAD retrieval with objectNN dataset

    Full text link
    The goal of this track is to study and evaluate the performance of 3D object retrieval algorithms using RGB-D data. This is inspired from the practical need to pair an object acquired from a consumer-grade depth camera to CAD models available in public datasets on the Internet. To support the study, we propose ObjectNN, a new dataset with well segmented and annotated RGB-D objects from SceneNN [HPN*16] and CAD models from ShapeNet [CFG*15]. The evaluation results show that the RGB-D to CAD retrieval problem, while being challenging to solve due to partial and noisy 3D reconstruction, can be addressed to a good extent using deep learning techniques, particularly, convolutional neural networks trained by multi-view and 3D geometry. The best method in this track scores 82% in accuracy

    SHREC\u2717: RgB-D to CAD Retrieval With ObjectNN Dataset

    No full text
    © 2017 The Eurographics Association. The goal of this track is to study and evaluate the performance of 3D object retrieval algorithms using RGB-D data. This is inspired from the practical need to pair an object acquired from a consumer-grade depth camera to CAD models available in public datasets on the Internet. To support the study, we propose ObjectNN, a new dataset with well segmented and annotated RGB-D objects from SceneNN [HPN∗16] and CAD models from ShapeNet [CFG∗15]. The evaluation results show that the RGB-D to CAD retrieval problem, while being challenging to solve due to partial and noisy 3D reconstruction, can be addressed to a good extent using deep learning techniques, particularly, convolutional neural networks trained by multi-view and 3D geometry. The best method in this track scores 82% in accuracy
    corecore