5,883 research outputs found

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time

    Distributed active transformer - a new power-combining andimpedance-transformation technique

    Get PDF
    In this paper, we compare the performance of the newly introduced distributed active transformer (DAT) structure to that of conventional on-chip impedance-transformations methods. Their fundamental power-efficiency limitations in the design of high-power fully integrated amplifiers in standard silicon process technologies are analyzed. The DAT is demonstrated to be an efficient impedance-transformation and power-combining method, which combines several low-voltage push-pull amplifiers in series by magnetic coupling. To demonstrate the validity of the new concept, a 2.4-GHz 1.9-W 2-V fully integrated power-amplifier achieving a power-added efficiency of 41% with 50-Ω input and output matching has been fabricated using 0.35-μm CMOS transistor

    A fully-integrated 1.8-V, 2.8-W, 1.9-GHz, CMOS power amplifier

    Get PDF
    This paper demonstrated the first 2-stage, 2.8W, 1.8V, 1.9GHz fully-integrated DAT power amplifier with 50Ω input and output matching using 0.18μm CMOS transistors. It has a small-signal gain of 27dB. The amplifier provides 2.8W of power into a 50Ω load with a PAE of 50%

    Fully integrated CMOS power amplifier design using the distributed active-transformer architecture

    Get PDF
    A novel on-chip impedance matching and power-combining method, the distributed active transformer is presented. It combines several low-voltage push-pull amplifiers efficiently with their outputs in series to produce a larger output power while maintaining a 50-Ω match. It also uses virtual ac grounds and magnetic couplings extensively to eliminate the need for any off-chip component, such as tuned bonding wires or external inductors. Furthermore, it desensitizes the operation of the amplifier to the inductance of bonding wires making the design more reproducible. To demonstrate the feasibility of this concept, a 2.4-GHz 2-W 2-V truly fully integrated power amplifier with 50-Ω input and output matching has been fabricated using 0.35-μm CMOS transistors. It achieves a power added efficiency (PAE) of 41 % at this power level. It can also produce 450 mW using a 1-V supply. Harmonic suppression is 64 dBc or better. This new topology makes possible a truly fully integrated watt-level gigahertz range low-voltage CMOS power amplifier for the first time

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB

    On the Trade-Off Between Quality Factor and Tuning Ratio in Tunable High-Frequency Capacitors

    Get PDF
    A benchmark of tunable and switchable devices at microwave frequencies is presented on the basis of physical limitations to show their potential for reconfigurable cellular applications. Performance limitations are outlined for each given technology focusing on the quality factor (Q) and tuning ratio (eta) as figures of merit. The state of the art in terms of these figures of merit of several tunable and switchable technologies is visualized and discussed. If the performance of these criteria is not met, the application will not be feasible. The quality factor can typically be traded off for tuning ratio. The benchmark of tunable capacitor technologies shows that transistor-switched capacitors, varactor diodes, and ferroelectric varactors perform well at 2 GHz for tuning ratios below 3, with an advantage for GaAs varactor diodes. Planar microelectromechanical capacitive switches have the potential to outperform all other technologies at tuning ratios higher than 8. Capacitors based on tunable dielectrics have the highest miniaturization potential, whereas semiconductor devices benefit from the existing manufacturing infrastructure

    CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    Get PDF
    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP

    A 77 GHz on-chip strip dipole antenna integrated with balun circuits for automotive radar

    Get PDF
    In this paper, design and implementation of a 77 GHz on-chip strip dipole antenna integrated with both lumped and transmission line based balun circuits are presented. The on-chip antenna is realized by using IHP’s 0.25 μm SiGe BiCMOS technology with localized back-side etch (LBE) module to decrease substrate loss. The strip dipole antenna is fed by both a lumped LC circuit and strip line tapered baluns integrated on the same substrate and occupies an area of 1x1.2 mm2 including the RF pads. For increased directivity, the antenna sits on a grounded silicon substrate. Experimental results show that antenna is well matched around the design frequency and achieves 7 GHz impedance bandwidth (minimum return loss of 17 dB) for the LC balun circuit. The antenna and its feeding structure are well suited for 77 GHz single chip automotive radar applications
    corecore