15,520 research outputs found

    Process for preparing polyimide adhesives

    Get PDF
    High bonding strengths are obtained for metals and fiber-reinforced organic resin composites with no significant loss in thermo-oxidative stability of the adhesive resin

    Glass Transition Temperature Depression at the Percolation Threshold in Carbon Nanotube-Epoxy Resin and Polypyrrole-Epoxy Resin Composites

    Get PDF
    The glass transition temperatures of conducting composites, obtained by blending carbon nanotubes (CNTs) or polypyrrole (PPy) particles with epoxy resin, were investigated by using both differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). For both composites, dc and ac conductivity measurements revealed an electrical percolation threshold at which the glass transition temperature and mechanical modulus of the composites pass through a minimum

    Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    Get PDF
    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. The CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations suggest that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer

    Improved epoxy resin for constructing cryogenic filament-wound pressure vessels

    Get PDF
    Mechanical properties of new resin at cryogenic temperatures are substantially improved over similar composite structures utilizing conventional resins, while properties at ambient temperature are identical to conventional resin composites

    Complex permeability of soft magnetic ferrite polyester resin composites at frequencies above 1 MHz

    Get PDF
    Composite soft magnetic materials consist of magnetic particles in a non-magnetic matrix. The properties of such materials can be modelled using effective medium theory. Measurements have been made of the complex permeability of composites produced using ferrite powder and polyester resin. The success of various effective medium expressions in predicting the variation of complex permeability with composition has been assessed

    Epoxy resin blends and composites from waste vegetable oil

    Get PDF
    Thermosets and composites were prepared from blends of epoxidized waste vegetable oils and diglycidyl ether of bisphenol-A to investigate this material as an alternative triglyceride source for epoxy resins. Purification of the waste oil was developed to remove impurities derived from thermal degradation in the frying process and different epoxidation methodologies were investigated. Effects of epoxidized vegetable oil content (up to 30 wt%) and origin on the tensile properties were studied and revealed that purified waste oils performed similarly to neat oil in contents up to 10 wt%, proving that this strategy does not compromise tensile properties when waste oils are used in suitable proportions. Furthermore, a more prominent plasticizing effect was observed when more than 15 wt% of bio-based resin was used as confirmed by DMA. Composites were prepared with recycled carbon fibres (up to 30 wt%) and thermosets with 10 wt% of bio-based epoxy resins, significantly improving the mechanical properties

    Mechanical testing of natural fibre reinforced polyester resin composites and Mode 1 fracture toughness testing of resin blocks

    Get PDF
    Recent European Parliament directive requires companies to achieve materials recycling greater than 80% in particular in the automotive sector [1]. The research on natural fibre based composite materials fits well into this ecological image. The advantages of natural fibres over synthetic materials include, low density, relative cheapness, availability and biodegradability. In this paper we explore the fabrication and mechanical testing of natural fibre composites and this is part of an on going study at Strathclyde University and describes the fabrication of composites using natural fibre and styrene polyester resin. The properties of the synthetic resin can be varied by changing the catalysts concentration and flexural (three point bending) and single-edged notched bending (SENB) properties are reported at different concentrations of the catalyst

    Promising born/graphite/resin composites

    Get PDF
    Lightweight composite has high specific strength and stiffness and remains effective under extreme environmental conditions. Use as engineering material is feasible because it has excellent mechanical properties and is easily produced within small tolerances on constituent volume fractions. Main benefit of composite is its improved longitudinal strength and modulus
    corecore