309,149 research outputs found

    Random Rectangular Graphs

    Get PDF
    A generalization of the random geometric graph (RGG) model is proposed by considering a set of points uniformly and independently distributed on a rectangle of unit area instead of on a unit square [0,1]^2. The topological properties of the random rectangular graphs (RRGs) generated by this model are then studied as a function of the rectangle sides lengths a and b=1/a, and the radius r used to connect the nodes. When a=1 we recover the RGG, and when a-->infinity the very elongated rectangle generated resembles a one-dimensional RGG. We obtain here analytical expressions for the average degree, degree distribution, connectivity, average path length and clustering coefficient for RRG. These results provide evidence that show that most of these properties depend on the connection radius and the side length of the rectangle, usually in a monotonic way. The clustering coefficient, however, increases when the square is transformed into a slightly elongated rectangle, and after this maximum it decays with the increase of the elongation of the rectangle. We support all our findings by computational simulations that show the goodness of the theoretical models proposed for RRGs.Comment: 23 pages, 8 figure

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions
    corecore