225,955 research outputs found

    Reactors for microbial electrobiotechnology

    No full text
    From the first electromicrobial experiment to a sophisticated microbial electrochemical process - it all takes place in a reactor. Whereas the reactor design and materials used strongly influence the obtained results, there are no common platforms for MES reactors. This is a critical convention gap, as cross-comparison and benchmarking among MES as well as MES vs. conventional biotechnological processes is needed. Only knowledge driven engineering of MES reactors will pave the way to application and commercialization. In this chapter we first assess the requirements on reactors to be used for bioelectrochemical systems as well as potential losses caused by the reactor design. Subsequently, we compile the main types and designs of reactors used for MES so far, starting from simple H-cells to stirred tank reactors. We conclude with a discussion on the weaknesses and strengths of the existing types of reactors for bioelectrochemical systems that are scored on design criteria and draw conclusions for the future engineering of MES reactors. [GRAPHICS]

    Intensified processes for FAME production from waste cooking oil: a technological review

    Get PDF
    This article reviews the intensification of fatty acid methyl esters (FAME) production from waste cooking oil (WCO) using innovative process equipment. In particular, it addresses the intensification of WCO feedstock transformation by transesterification, esterification and hydrolysis reactions. It also discusses catalyst choice and product separation. FAME production can be intensified via the use of a number of process equipment types, including as cavitational reactors, oscillatory baffled reactors, microwave reactors, reactive distillation, static mixers and microstructured reactors. Furthermore, continuous flow equipment that integrate both reaction and separation steps appear to be the best means for intensifying FAME production. Heterogeneous catalysts have also shown to provide attractive results in terms of reaction performance in certain equipment, such as microwave reactors and reactive distillation

    Analysis and Kinetics of the Sequencing Batch Reactors

    Get PDF
    Fundamental analysis and kinetics of treatment reactors are major topics in environmental engineering literature. These fundamental topics in reactor processes are well known for the ideal batch reactor, the continuous stirred tank reactor, and the plug flow reactor. The sequencing batch reactors (SBRs) are relatively new in the field, but are widely used. Despite the wide application of sequencing batch reactors in the field, information is lacking on the fundamental analysis and kinetics, especially with comparison to the ideal batch reactor. This report presents analysis and kinetics of the sequencing batch reactors and compares the kinetics equations developed with those of the ideal batch reactor especially for zero-order, first-order, and second-order reactions. A significant result is that the SBRs’ equations for the three re- action orders analyzed become the equations for the ideal batch reactor if the entire reactor volume of a sequencing batch reactor is decanted. The fundamental analysis and the kinetics presented will help enhance the understanding of the sequencing batch reactors and their use in waste treatment

    Carbon monoxide oxidation rates computed for automobile thermal reactor conditions

    Get PDF
    Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts

    Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art

    Get PDF
    Process intensification is a chemical engineering field which has truly emerged in the past few years and is currently rapidly growing. It consists in looking for safer operating conditions, lower waste in terms of costs and energy and higher productivity; and away to reach such objectives is to develop multifunctional devices such as heat exchanger/reactors for instance. This review is focused on the latter and makes a point on heat exchanger/reactors. After a brief presentation of requirements due to transposition from batch to continuous apparatuses, heat exchangers/reactors at industrial or pilot scales and their applications are described

    Scaling behavior of optimally structured catalytic microfluidic reactors

    Get PDF
    In this study of catalytic microfluidic reactors we show that, when optimally structured, these reactors share underlying scaling properties. The scaling is predicted theoretically and verified numerically. Furthermore, we show how to increase the reaction rate significantly by distributing the active porous material within the reactor using a high-level implementation of topology optimization.Comment: 4 pages, 5 eps figure

    A Research Agenda for Uncooperative Federalists

    Get PDF
    Increasing demand on more effective cell culture reactors has driven optimization works to increase output of products. This has led to development of soft sensors that uses mathematical formulas to increase the available information for the parameters during runs. In the project two parameters was evaluated for use in such a soft sensor, viability by measuring on-line capacitance with Aber probe and L-lactate production using BioSenz apparatus. To determine how well these could be used both were used on batch reactors measuring on a mouse-mouse B cell hybridoma culture which produced IgG1. On-line measurements were performed by probes which measured directly on the cell suspension or withdrew sterile sample from the reactor. Measuring viability gave results with low error, which can be concluded to the variation in reference cell count, but it could not be determined if measuring L-lactate production with BioSenz works in reactors of this size. More work needs to be done on other types of reactors, like fed-batch or perfusion, or lower working volumes.

    Reaction kinetics in open reactors and serial transfers between closed reactors

    Full text link
    Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.Comment: 11 pages, 7 figure
    corecore