1 research outputs found

    Development of a Formal Verification Methodology for B Specifications using PERF formal toolkit. Application to safety requirements of railway systems.

    Get PDF
    The design of complex systems involves several design models supporting different analysis techniques for validation and verification purposes. These activities lead to the definition of heterogeneous modelling languages and analysis techniques. In this setting, meeting certification standards becomes a key issue in system engineering. Reducing heterogeneity due to the presence of different modelling languages can be addressed by providing an integrated framework in which involved modelling languages and techniques are formalised. In such a framework, checking global requirements fulfilment on heterogeneous models of a complex critical system becomes possible in many cases. The work presented in this thesis addresses the problem of integrated verification of system design models in the context of transportation systems, in particular railway systems. It has been achieved in context of the B-PERFect project of RATP (Parisian Public Transport Operator and Maintainer) aiming at applying formal verification using the PERF approach on the integrated safety-critical models of embedded software related to railway domain expressed in a single unifying modelling language: High Level Languge (HLL). We also discuss integrated verification at the system level. The proposed method for verification of safety-critical software is a bottom-up approach, starting from the source code to the high-level specification. This work addresses the particular case of the B method. It presents a certified translation of B formal models to HLL models. The proposed approach uses Isabelle/HOL as a unified logical framework to describe the formal semantics and to formalise the transformation relation between both modelling languages. The developed Isabelle/HOL models are proved in order to guarantee the correctness of our translation process. Moreover, we have also used weakbisimulation relation to check semantic preservation after transformations. In this thesis, we also present the implementation of the defined transformation syntactic rules as the B2HLL tool. Moreover, we show the model animation process we set up to validate the B2HLL translator tool with respect to the formalised transformation rules we defined in Isabelle/HOL. This approach helps us to validate definitions, lemmas and theorems of our formalised specifications. We have used the B2HLL tool to translate multiple B models, and we also show that when models are translated into this unified modelling language, HLL, it becomes possible to handle verification of properties expressed across different models
    corecore