35,287 research outputs found

    Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma.

    Get PDF
    A small, but unique subgroup of retinoblastoma has been identified with no detectable mutation in the retinoblastoma gene (RB1) and with high levels of MYCN gene amplification. This manuscript investigated alternate pathways of inactivating pRb, the encoded protein in these tumors. We analyzed the mutation status of the RB1 gene and MYCN copy number in a series of 245 unilateral retinoblastomas, and the phosphorylation status of pRb in a subset of five tumors using immunohistochemistry. There were 203 tumors with two mutations in RB1 (RB1(-/-) , 83%), 29 with one (RB1(+/-) , 12%) and 13 with no detectable mutations (RB1(+/+) , 5%). Eighteen tumors carried MYCN amplification between 29 and 110 copies: 12 had two (RB1(-/-) ) or one RB1 (RB1(+/-) ) mutations, while six had no mutations (RB1(+/+) ). Immunohistochemical staining of tumor sections with antibodies against pRb and phosphorylated Rb (ppRb) displayed high levels of pRb and ppRb in both RB1(+/+) and RB1(+/-) tumors with MYCN amplification compared to no expression of these proteins in a classic RB1(-/-) , MYCN-low tumor. These results establish that high MYCN amplification can be present in retinoblastoma with or without coding sequence mutations in the RB1 gene. The functional state of pRb is inferred to be inactive due to phosphorylation of pRb in the MYCN-amplified retinoblastoma without coding sequence mutations. This makes inactivation of RB1 by gene mutation or its protein product, pRb, by protein phosphorylation, a necessary condition for initiating retinoblastoma tumorigenesis, independent of MYCN amplification

    CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis

    Get PDF
    Retinoblastoma is a pediatric eye tumor in which bi-allelic inactivation of the Retinoblastoma 1 (RB1) gene is the initiating genetic lesion. Although recently curative rates of retinoblastoma have increased, there are at this time no molecular targeted therapies available. This is, in part, due to the lack of highly penetrant and rapid retinoblastoma animal models that facilitate rapid identification of targets that allow therapeutic intervention. Different mouse models are available, all based on genetic deactivation of both Rb1 and Retinoblastoma-like 1 (Rbl1), and each showing different kinetics of retinoblastoma development. Here, we show by CRISPR/Cas9 techniques that similar to the mouse, neither rb1 nor rbl1 single mosaic mutant Xenopus tropicalis develop tumors, whereas rb1/rbl1 double mosaic mutant tadpoles rapidly develop retinoblastoma. Moreover, occasionally presence of pinealoblastoma (trilateral retinoblastoma) was detected. We thus present the first CRISPR/Cas9 mediated cancer model in Xenopus tropicalis and the first genuine genetic non-mammalian retinoblastoma model. The rapid kinetics of our model paves the way for use as a pre-clinical model. Additionally, this retinoblastoma model provides unique possibilities for fast elucidation of novel drug targets by triple multiplex CRISPR/Cas9 gRNA injections (rb1 + rbl1 + modifier gene) in order to address the clinically unmet need of targeted retinoblastoma therapy

    Mutations in the RB1 Gene in Argentine Retinoblastoma Patients and Uncommon Clinical Presentations

    Get PDF
    Background: Retinoblastoma, the most common ocular cancer of childhood, is caused by inactivation of the RB1 tumor suppressor gene in the developing retina. It may occur as unilateral, bilateral or rarely as multicentric retinoblastoma, including pineal or suprasellar tumors. Being the retinoblastoma a hereditary cancer, identification of the causative mutation is important for risk prediction in the family members. An early detection of tumor is critical for survival and eye preservation. Screening for RB1 mutations is important for early tumor detection, critical for survival and eye preservation. Purpose: To identify causative RB1 mutations in retinoblastoma patients with different clinical presentations, some of them with a rare multicentric retinoblastoma or with a second non ocular malignancy, as well as the rare association with down syndrome. A comprehensive approach was used to identify the mutations and to detect children with a hereditary condition. Methods: A cohort of 20 patients with unilateral, bilateral and multicentric retinoblastoma was studied. Blood and tumor DNA was analyzed by sequencing, segregation of polymorphisms and MLPA analyses. Some of the rare mutations were validated by cloning or by Real-Time PCR. Results: Six germline and seven somatic mutations were identified; they include nonsense, frameshift, splice mutations and gross rearrangements, four of them novel. Three out of four nonsense/ frameshift germline mutations were associated with severe phenotype: bilateral and multicentric retinoblastomas. The at-riskhaplotype was identified in a familial case including one patient with osteosarcoma; it was useful for detection of mutation carriers. Conclusions: This study allowed us to identify causative RB1 mutations, including several novels. Some patients showed uncommon clinical presentations of retinoblastoma. These data are significant for genetic counseling. Our results support the relevance of carrying out complete genetic screening for RB1 mutations in both constitutional and tumor tissues.Fil: Ottaviani, Daniela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Genética y Biología Molecular; ArgentinaFil: Parma, Diana Lidia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Genética y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Ferrer, Marcela Maria. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Florencia Giliberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Genética y Biología Molecular; ArgentinaFil: Luce, Leonela Natalia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Genética y Biología Molecular; ArgentinaFil: Alonso, Cristina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan". Servicio de Hemato-Oncología; ArgentinaFil: Szijan, Irena. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Genética y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    Syntheses, Raman Spectroscopy and Crystal Structures of Alkali Hexa-fluoridorhenates(IV) Revisited

    Get PDF
    The A2[ReF6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type P\overline{3}m1, adopting the K2[GeF6] structure type. Common to all A2[ReF6] structures are slightly distorted octa­hedral [ReF6]2− anions with an average Re—F bond length of 1.951 (8) Å. In those salts, symmetry lowering on the local [ReF6]2− anions from Oh (free anion) to D3d (solid-state structure) occur. The distortions of the [ReF6]2− anions, as observed in their Raman spectra, are correlated to the size of the counter-cations

    On the Efetov-Wegner terms by diagonalizing a Hermitian supermatrix

    Full text link
    The diagonalization of Hermitian supermatrices is studied. Such a change of coordinates is inevitable to find certain structures in random matrix theory. However it still poses serious problems since up to now the calculation of all Rothstein contributions known as Efetov-Wegner terms in physics was quite cumbersome. We derive the supermatrix Bessel function with all Efetov-Wegner terms for an arbitrary rotation invariant probability density function. As applications we consider representations of generating functions for Hermitian random matrices with and without an external field as integrals over eigenvalues of Hermitian supermatrices. All results are obtained with all Efetov-Wegner terms which were unknown before in such an explicit and compact representation.Comment: 23 pages, PACS: 02.30.Cj, 02.30.Fn, 02.30.Px, 05.30.Ch, 05.30.-d, 05.45.M

    Facial expressions emotional recognition with NAO robot

    Get PDF
    Human-robot interaction research is diverse and covers a wide range of topics. All aspects of human factors and robotics are within the purview of HRI research so far as they provide insight into how to improve our understanding in developing effective tools, protocols, and systems to enhance HRI. For example, a significant research effort is being devoted to designing human-robot interface that makes it easier for the people to interact with robots. HRI is an extremely active research field where new and important work is being published at a fast pace. It is crucial for humanoid robots to understand the emotions of people for efficient human robot interaction. Initially, the robot detects human face by Viola- Jones technique. Later, facial distance measurements are accumulated by geometric based facial distance measurement method. Then facial action coding system is used to detect movements of measured facial points. Finally, measured facial movements are evaluated to get instant emotional properties of human face in this research; it has been specifically applied to NAO humanoid robot
    corecore