36 research outputs found

    Listening while Speaking and Visualizing: Improving ASR through Multimodal Chain

    Full text link
    Previously, a machine speech chain, which is based on sequence-to-sequence deep learning, was proposed to mimic speech perception and production behavior. Such chains separately processed listening and speaking by automatic speech recognition (ASR) and text-to-speech synthesis (TTS) and simultaneously enabled them to teach each other in semi-supervised learning when they received unpaired data. Unfortunately, this speech chain study is limited to speech and textual modalities. In fact, natural communication is actually multimodal and involves both auditory and visual sensory systems. Although the said speech chain reduces the requirement of having a full amount of paired data, in this case we still need a large amount of unpaired data. In this research, we take a further step and construct a multimodal chain and design a closely knit chain architecture that combines ASR, TTS, image captioning, and image production models into a single framework. The framework allows the training of each component without requiring a large number of parallel multimodal data. Our experimental results also show that an ASR can be further trained without speech and text data and cross-modal data augmentation remains possible through our proposed chain, which improves the ASR performance.Comment: Accepted in IEEE ASRU 201

    Generic and Specialized Word Embeddings for Multi-Domain Machine Translation

    Get PDF
    International audienceSupervised machine translation works well when the train and test data are sampled from the same distribution. When this is not the case, adaptation techniques help ensure that the knowledge learned from out-of-domain texts generalises to in-domain sentences. We study here a related setting, multi-domain adaptation, where the number of domains is potentially large and adapting separately to each domain would waste training resources. Our proposal transposes to neural machine translation the feature expansion technique of (Daum\'e III, 2007): it isolates domain-agnostic from domain-specific lexical representations, while sharing the most of the network across domains.Our experiments use two architectures and two language pairs: they show that our approach, while simple and computationally inexpensive, outperforms several strong baselines and delivers a multi-domain system that successfully translates texts from diverse sources

    CogAlign: Learning to Align Textual Neural Representations to Cognitive Language Processing Signals

    Full text link
    Most previous studies integrate cognitive language processing signals (e.g., eye-tracking or EEG data) into neural models of natural language processing (NLP) just by directly concatenating word embeddings with cognitive features, ignoring the gap between the two modalities (i.e., textual vs. cognitive) and noise in cognitive features. In this paper, we propose a CogAlign approach to these issues, which learns to align textual neural representations to cognitive features. In CogAlign, we use a shared encoder equipped with a modality discriminator to alternatively encode textual and cognitive inputs to capture their differences and commonalities. Additionally, a text-aware attention mechanism is proposed to detect task-related information and to avoid using noise in cognitive features. Experimental results on three NLP tasks, namely named entity recognition, sentiment analysis and relation extraction, show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets. Moreover, our model is able to transfer cognitive information to other datasets that do not have any cognitive processing signals

    Building the Moroccan Darija WordNet (MDW) using Bilingual Resources

    Get PDF
    Moroccan Darija is one of the Arabic dialects, a continuum of under-resourced vernaculars. We develop a Moroccan Darija Wordnet (MDW) using a bilingual Moroccan-English dictionary, from which we collect nearly 13,000 definitions and over 15,000 lemmas. A Moroccan alphabet is set to make the MDW user-friendly. We link the Moroccan-English definitions to the Princeton WordNet using a method that found matches for about 77% of these, and estimated accuracy using confidence scores. Over 2,300 Moroccan synsets were verified as a first step of manual validation and are now included in the MDW, which is released as part of the Open Multilingual WordNet

    Accurate and Reliable Classification of Unstructured Reports on Their Diagnostic Goal Using BERT Models

    Get PDF
    Understanding the diagnostic goal of medical reports is valuable information for understanding patient flows. This work focuses on extracting the reason for taking an MRI scan of Multiple Sclerosis (MS) patients using the attached free-form reports: Diagnosis, Progression or Monitoring. We investigate the performance of domain-dependent and general state-of-the-art language models and their alignment with domain expertise. To this end, eXplainable Artificial Intelligence (XAI) techniques are used to acquire insight into the inner workings of the model, which are verified on their trustworthiness. The verified XAI explanations are then compared with explanations from a domain expert, to indirectly determine the reliability of the model. BERTje, a Dutch Bidirectional Encoder Representations from Transformers (BERT) model, outperforms RobBERT and MedRoBERTa.nl in both accuracy and reliability. The latter model (MedRoBERTa.nl) is a domain-specific model, while BERTje is a generic model, showing that domain-specific models are not always superior. Our validation of BERTje in a small prospective study shows promising results for the potential uptake of the model in a practical setting.</p
    corecore