5,009 research outputs found
Karakteristik Mekanik Komposit Lamina Serat Rami Epoksi Sebagai Bahan Alternatif Soket Prostesis
Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis. This paper presentsan investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy laminacomposite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforcedepoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based onAmerican Society for Testing Material (ASTM) standard D 3039/D 3039M for tensile strength and ASTM D 4255/D4255M-83 for shear strength. The ramie fiber applied is a fiber continue 100 % Ne14\u27S with Epoxy Resin Bakelite EPR174 as matrix and Epoxy Hardener V-140 as hardener. The sample composite test made by hand lay up method.Multiaxial characteristic from ramie fiber reinforced epoxy composite will be compared with ISO standard forplastic/polymer for health application and refers strength of material application at Prosthetics and Orthotics. Theanalysis was completed with the mode of the failure and the failure criterion observation by using Scanning ElectronMicroscope (SEM). Based on results of the research could be concluded that ramie fiber reinforced epoxy compositecould be developed further as the alternative material for socket prosthesis on Vf 40-50%. Results of the research willbe discussed in more detail in this paper
Body weight and statistic vital of Texel sheep in Wonosobo District by giving the ramie hay as an additional woof
Abstract. Kuntjoro A, Sutarno, Astirin OP. 2009. Body weight and statistic vital of Texel sheep in Wonosobo District by giving the
ramie hay as an additional woof. Nusantara Bioscience 1: 23-30. This research is aimed to observe the body weight and statistic vital
measurement of 50 Texel sheep. Sheep are classified into five treatments of giving woof P0 (giving tree greenish woof without
concentrate), P1 (giving greenish woof and concentrate without adding the ramie hay/0%) concentrate), P2 (giving greenish woof and
concentrate by adding 10%) ramie hay), P3 (giving greenish woof and concentrate by adding 20%) ramie hay), P4 (giving greenish
woof and concentrate by adding 30%) ramie hay), every treatment was repeated 10 times. The result shows that even it can’t yet replace
the concentrate function, but adding ramie hay as much as 10%), 20%) and 30%) on sheep woof can increase the body weight’s growth
respectively 186.67 g/day, 153.34 g/day dan 103.34 g/day. The addition of ramie hay 10%), 20%) and 30%) can increase the addition of
statistic vital’s measurement on breast of sheep livestock 1.20 cm); 0.95 cm) and 0.90 cm); the addition of statistic vital measurement on
the body length of sheep livestock 0.05 cm); 1.00 cm) and 0.75 cm) and also the addition of breast width is 1.50 cm); 0.15 cm) and 0.3
cm). Meanwhile the addition of ramie hay on livestock woof can only increase the addition of statistic vital mesurement on breast at
giving 30%) as big as 0.15 cm). It is needed to know further on giving ramie hay by concentration comparasion of hay of different leaf
and stem
De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud)
BACKGROUND: Ramie fiber, extracted from vegetative organ stem bast, is one of the most important natural fibers. Understanding the molecular mechanisms of the vegetative growth of the ramie and the formation and development of bast fiber is essential for improving the yield and quality of the ramie fiber. However, only 418 expressed tag sequences (ESTs) of ramie deposited in public databases are far from sufficient to understand the molecular mechanisms. Thus, high-throughput transcriptome sequencing is essential to generate enormous ramie transcript sequences for the purpose of gene discovery, especially genes such as the cellulose synthase (CesA) gene. RESULTS: Using Illumina paired-end sequencing, about 53 million sequencing reads were generated. De novo assembly yielded 43,990 unigenes with an average length of 824 bp. By sequence similarity searching for known proteins, a total of 34,192 (77.7%) genes were annotated for their function. Out of these annotated unigenes, 16,050 and 13,042 unigenes were assigned to gene ontology and clusters of orthologous group, respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 19,846 unigenes were mapped to 126 KEGG pathways, and 565 genes were assigned to http://starch and sucrose metabolic pathway which was related with cellulose biosynthesis. Additionally, 51 CesA genes involved in cellulose biosynthesis were identified. Analysis of tissue-specific expression pattern of the 51 CesA genes revealed that there were 36 genes with a relatively high expression levels in the stem bark, which suggests that they are most likely responsible for the biosynthesis of bast fiber. CONCLUSION: To the best of our knowledge, this study is the first to characterize the ramie transcriptome and the substantial amount of transcripts obtained will accelerate the understanding of the ramie vegetative growth and development mechanism. Moreover, discovery of the 36 CesA genes with relatively high expression levels in the stem bark will present an opportunity to understand the ramie bast fiber formation and development mechanisms
Cellulosic materials as natural fillers in starch-containing matrix-based films: a review
In this work, the different cellulosic materials, namely cellulose and lignin are analyzed. In addition, the starch-containing matrices (isolated starch and flour) reinforced with cellulosic materials to be used in packaging applications are described. Many efforts have been exerted to develop biopackaging based on renewable polymers, since these could reduce the environmental impact caused by petrochemical resources. Special attention has had the starch as macromolecule for forming biodegradable packaging. For these reasons, shall also be subject of this review the effect of each type of cellulosic material on the starch-containing matrix-based thermoplastic materials. In this manner, this review contains a description of films based on starch-containing matrices and biocomposites, and then has a review of cellulosic material-based fillers. In the same way, this review contains an analysis of the works carried out on starch-containing matrices reinforced with cellulose and lignin. Finally, the manufacturing processes of starch/cellulose composites are provided as well as the conclusions and the outlook for future works.Fil: Gutiérrez Carmona, Tomy José. Universidad Central de Venezuela; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
Komposit Laminate Rami Epoksi Sebagai Bahan Alternatif Socket Prosthesis
Pure plant oil, biofuel, coconut oil, palm oil, jatropha oilSocket is the most important component in a prosthesis making. Performance criteria for prosthetic socket material include strength, durability, minimal weight, comfort, and minimal fabrication cost. This research attempts to analyze the strength of ramie fiber reinforced epoxy laminate composite as an alternative of socket prosthesis. The research based on ASTM D 3039/D 3039M for tensile strength and ASTM D 695 for compressive strength. The ramie fiber used was a continuous fiber 100 % Ne14'S, with Epoxy Resin Bakelite EPR 174 and Epoxy Hardener V-140. The sample test was created using a hand lay-up method. The result of this research is presented in a correlation of finsile strength (st), compression strength (sc), elasticity modulus (E) versus fraction volume of fiber (Vf). The result is then being compared with some of the prosthesis material's strength produced by Otto Bock. The analysis was completed with the mode of the failure observation by using Scanning Electron Microscope (SEM). The result concludes that the ramie fiber reinforced epoxy laminate composite is potentially developed further as a socket prosthesis material on Vf 40 – 50 %. Tensile strength and specific strength that has been generated was higher than that of several materias for socket prosthesis, including fiberglass. The mode of the failure found were a brittle failure on Vf: 10-30%, debonding and delamination on Vf: 40-50%
Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties
In this study, the microstructure of different natural plant fibers (flax, jute, ramie, and sisal fibers) were characterized by using low-voltage Scanning Electron Microscopy (LV-SEM). The LV-SEM observations indicated that jute and sisal fibers exhibit less variation in terms of the fiber cross-sectional area, internal lumen shape and size, and cell wall thickness in comparison to flax and ramie fibers. We find that this is also reflected in the tensile properties of the fibers. The tensile properties of single ramie fibers and their fracture behavior was investigated in detail. The stress-strain behavior showed two distinctive regimes. For linear curves, the tensile strength varies from 648-1086 MPa whereas nonlinear curves result in much lower values (177-452) MPa. This variation was linked to differences in the microstructure of the fibers. The LV-SEM of the tensile fracture surfaces of ramie fibers revealed details on the cell wall structure and its fracture behavior under tensile load. Moreover, the SEM images confirm that the collapse of the primary cell wall generally leads to a non-linear stress-strain curve for single ramie fibers
Preparation and electrochemical performance of hollow activated carbon fiber self-supported electrode for supercapacitor
Hollow activated carbon fiber (HACF) with high specific surface area and high charge storage capability was prepared by pre-oxidation, carbonization and KOH-activation from polyacrylonitrile (PAN). HACF was used as self-supported working electrode directly without any binder and conductive agent. The effect of the activation time on specific surface area of HACF was studied intensively. The results show that the specific surface area of HACF increased with the increase of activation time from 0.5 h to 1.5 h, and then decreased with further increase of activation time. Highest specific surface area of 1873 m(2)g(-1) and micropore volume of 0.61 cm(3)g(-1) were obtained in HACF activated for 1.5 h. Electrochemical properties of HACF can be improved with increase of activation time, but excessive activation results in the decrease of specific surface area and increase of internal resistance of HACF. The self-supported electrode of HACF possesses a large specific capacitance of 323 F g(-1) at 0.05 A g(-1) and 216 F g(-1) at 1 A g(-1). Therefore, HACF can be a promising self-supported electrode for high performance supercapacitors
Functional application of noble metal nanoparticles in situ synthesized on ramie fibers
Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers
- …
