528 research outputs found

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    An Example of Pi^0_3-complete Infinitary Rational Relation

    Get PDF
    We give in this paper an example of infinitary rational relation, accepted by a 2-tape B\"{u}chi automaton, which is Pi^0_3-complete in the Borel hierarchy. Moreover the example of infinitary rational relation given in this paper has a very simple structure and can be easily described by its sections

    Preface

    Get PDF

    Advice Complexity of the Online Induced Subgraph Problem

    Get PDF
    Several well-studied graph problems aim to select a largest (or smallest) induced subgraph with a given property of the input graph. Examples of such problems include maximum independent set, maximum planar graph, and many others. We consider these problems, where the vertices are presented online. With each vertex, the online algorithm must decide whether to include it into the constructed subgraph, based only on the subgraph induced by the vertices presented so far. We study the properties that are common to all these problems by investigating the generalized problem: for a hereditary property \pty, find some maximal induced subgraph having \pty. We study this problem from the point of view of advice complexity. Using a result from Boyar et al. [STACS 2015], we give a tight trade-off relationship stating that for inputs of length n roughly n/c bits of advice are both needed and sufficient to obtain a solution with competitive ratio c, regardless of the choice of \pty, for any c (possibly a function of n). Surprisingly, a similar result cannot be obtained for the symmetric problem: for a given cohereditary property \pty, find a minimum subgraph having \pty. We show that the advice complexity of this problem varies significantly with the choice of \pty. We also consider preemptive online model, where the decision of the algorithm is not completely irreversible. In particular, the algorithm may discard some vertices previously assigned to the constructed set, but discarded vertices cannot be reinserted into the set again. We show that, for the maximum induced subgraph problem, preemption cannot help much, giving a lower bound of Ω(n/(c2logc))\Omega(n/(c^2\log c)) bits of advice needed to obtain competitive ratio cc, where cc is any increasing function bounded by \sqrt{n/log n}. We also give a linear lower bound for c close to 1

    From Quantum Query Complexity to State Complexity

    Full text link
    State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata. One such method is presented and demonstrated in this paper. In particular, we show that state succinctness results can be derived out of query complexity results.Comment: Some typos in references were fixed. To appear in Gruska Festschrift (2014). Comments are welcome. arXiv admin note: substantial text overlap with arXiv:1402.7254, arXiv:1309.773

    Online Multi-Coloring with Advice

    Full text link
    We consider the problem of online graph multi-coloring with advice. Multi-coloring is often used to model frequency allocation in cellular networks. We give several nearly tight upper and lower bounds for the most standard topologies of cellular networks, paths and hexagonal graphs. For the path, negative results trivially carry over to bipartite graphs, and our positive results are also valid for bipartite graphs. The advice given represents information that is likely to be available, studying for instance the data from earlier similar periods of time.Comment: IMADA-preprint-c

    Wadge Degrees of ω\omega-Languages of Petri Nets

    Full text link
    We prove that ω\omega-languages of (non-deterministic) Petri nets and ω\omega-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal α<ω_1CK\alpha < \omega\_1^{{\rm CK}} there exist some Σ0_α{\bf \Sigma}^0\_\alpha-complete and some Π0_α{\bf \Pi}^0\_\alpha-complete ω\omega-languages of Petri nets, and the supremum of the set of Borel ranks of ω\omega-languages of Petri nets is the ordinal γ_21\gamma\_2^1, which is strictly greater than the first non-recursive ordinal ω_1CK\omega\_1^{{\rm CK}}. We also prove that there are some Σ_11{\bf \Sigma}\_1^1-complete, hence non-Borel, ω\omega-languages of Petri nets, and that it is consistent with ZFC that there exist some ω\omega-languages of Petri nets which are neither Borel nor Σ_11{\bf \Sigma}\_1^1-complete. This answers the question of the topological complexity of ω\omega-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].Comment: arXiv admin note: text overlap with arXiv:0712.1359, arXiv:0804.326

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore