12,369 research outputs found
Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR
Monitoring and detection of ships and oil spills using
synthetic aperture radar (SAR) have received a considerable attention over the past few years, notably due to the wide area coverage and day and night all-weather capabilities of SAR systems. Among different polarimetric SAR modes, dual-pol SAR data are widely used for monitoring large ocean and coastal areas. The degree of polarization (DoP) is a fundamental quantity characterizing a partially polarized electromagnetic field, with significantly less computational complexity, readily adaptable for on-board implementation, compared with other well-known polarimetric discriminators. The performance of the DoP is studied for joint ship and oil-spill detection under different polarizations in hybrid/compact and linear dual-pol SAR imagery. Experiments are performed on RADARSAT-2 -band polarimetric data sets, over San Francisco Bay, and -band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico
On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar
In this paper we discuss characteristic properties of radar signatures of oceanic and atmospheric convection features in the Greenland Sea. If the water surface is clean (no surface films or ice coverage), oceanic and atmospheric features can become visible in radar images via a modulation of the surface roughness, and their radar signatures can be very similar. For an unambiguous interpretation and for the retrieval of quantitative information on current and wind variations from radar imagery with such signatures, theoretical models of current and wind phenomena and their radar imaging mechanisms must be utilized. We demonstrate this approach with the analysis of some synthetic aperture radar (SAR) images acquired by the satellites ERS-2 and RADARSAT-1. In once case, an ERS-2 SAR image an a RADARSAT-1 ScanSAR image exhibit pronounced cell-like signatures with length scales on the order of 10-20 km and modulation depths of about 5-6 dB and 9-10 dB, respectively. Simulations with a numerical SAR imagaing model and various input current and wind fields reveal that the signatures in both images can be expained consistently by wind variations on the order of±2.5 ms, but not by surface current variations on realistic orders of magnitude. Accordingly, the observed features must be atmospheric convection cells. This is confirmed by visible typical cloud patterns in a NOAA AVHRR image of the test scenario. In another case, the presence of an oceanic convective chimney is obvious from in situ data, but no signatures of it are visible in an ERS-2 SAR image. We show by numerical simulations with an oceanic convection model and our SAR imaging model that this is consistent with theoretical predictions, since the current gradients associated with the observed chimney are not sufficiently strong to give rise to significant signatures in an ERS-2 SAR image under the given conditions. Further model results indicate that it should be generally difficult to observe oceanic convection features in the Greenland Sea with ERS-2 or RADARSAT-1 SAR, since their signatures resulting from pure wave-current interaction will be too weak to become visible in the noisy SAR images in most cases. This situation will improve with the availability of future high-resolution SARs such as RADARSAT-2 SAR in fine resolution mode (2004) and TerraSAR-X (2005) which will offer significantly reduced speckle noise fluctuations at comparable spatial resolutions and thus a much better visibility of small image variations on spatial scales on the order of a few hundred meters
DInSAR deformation time series for monitoring urban areas: The impact of the second generation SAR systems
We investigate the capability improvement of the DInSAR techniques to map deformation phenomena affecting urban areas, by performing a comparative analysis of the deformation time series retrieved by applying the full resolution Small BAseline Subset (SBAS) DInSAR technique to selected sequences of SAR data acquired by the ENVISAT, RADARSAT-1 and COSMO-SkyMed (CSK) SAR data. The presented study, focused on the city of Napoli (Italy), allows us to quantify the dramatic increase of the DInSAR coherent pixel density achieved by exploiting the high resolution X-Band CSK SAR images with respect to the RADARSAT-1 and ENVISAT products, respectively; this permits us to analyze nearly all the structures located within the investigated urbanized area and, in many cases, also portions of a same building. © 2012 IEEE
Advances in mapping ice-free surfaces within the Northern Antarctic peninsula region using polarimetric RADARSAT-2 data
Ice-free areas within the Northern Antarctic Peninsula
region are of interest for studying changes occurring to
surface covers, including those related to glacial coverage,
raised beach deposits and periglacial processes and
permafrost. The objective of this work is to map the main
surface covers within ice-free areas of King George Island,
the largest island of the South Shetlands archipelago, using
fully polarimetric RADARSAT-2 SAR data.
Surface covers such as rock outcrops and glacial till, stone
fields, patterned ground, and sand and gravel deposits form
the most representative classes and account for 84 km2 of
the ice-free areas on the island. A distribution of complex
geomorphological features and landforms was obtained,
being some of them considered indicators of periglacial
processes and presence of permafrost.Published versio
System Concepts for Bi- and Multi-Static SAR Missions
The performance and capabilities of bi- and multistatic spaceborne synthetic aperture radar (SAR) are analyzed. Such systems can be optimized for a broad range of applications like frequent monitoring, wide swath imaging, single-pass cross-track interferometry, along-track interferometry, resolution enhancement or radar tomography. Further potentials arises from digital beamforming on receive, which allows to gather additional information about the direction of the scattered radar echoes. This directional information can be used to suppress interferences, to improve geometric and radiometric resolution, or to increase the unambiguous swath width. Furthermore, a coherent combination of multiple receiver signals will allow for a suppression of azimuth ambiguities. For this, a reconstruction algorithm is derived, which enables a recovery of the unambiguous Doppler spectrum also in case of non-optimum receiver aperture displacements leading to a non-uniform sampling of the SAR signal. This algorithm has also a great potential for systems relying on the displaced phase center (DPC) technique, like the high resolution wide swath (HRWS) SAR or the split antenna approach in the TerraSAR-X and Radarsat II satellites
Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes
We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion
Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance
Model-based decompositions have gained considerable attention after the
initial work of Freeman and Durden. This decomposition which assumes the target
to be reflection symmetric was later relaxed in the Yamaguchi et al.
decomposition with the addition of the helix parameter. Since then many
decomposition have been proposed where either the scattering model was modified
to fit the data or the coherency matrix representing the second order
statistics of the full polarimetric data is rotated to fit the scattering
model. In this paper we propose to modify the Yamaguchi four-component
decomposition (Y4O) scattering powers using the concept of statistical
information theory for matrices. In order to achieve this modification we
propose a method to estimate the polarization orientation angle (OA) from
full-polarimetric SAR images using the Hellinger distance. In this method, the
OA is estimated by maximizing the Hellinger distance between the un-rotated and
the rotated and the components of the coherency matrix
. Then, the powers of the Yamaguchi four-component model-based
decomposition (Y4O) are modified using the maximum relative stochastic distance
between the and the components of the coherency matrix at the
estimated OA. The results show that the overall double-bounce powers over
rotated urban areas have significantly improved with the reduction of volume
powers. The percentage of pixels with negative powers have also decreased from
the Y4O decomposition. The proposed method is both qualitatively and
quantitatively compared with the results obtained from the Y4O and the Y4R
decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR
L-band Hayward dataset.Comment: Accepted for publication in IEEE J-STARS (IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing
Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The rationale of polarimetric optimization techniques is to enhance the phase quality of the interferograms by combining adequately the different polarization channels available to produce an improved one. Different approaches have been proposed for polarimetric persistent scatterer interferometry (PolPSI). They range from the simple and computationally efficient BEST, where, for each pixel, the polarimetric channel with the best response in terms of phase quality is selected, to those with high-computational burden like the equal scattering mechanism (ESM) and the suboptimum scattering mechanism (SOM). BEST is fast and simple, but it does not fully exploit the potentials of polarimetry. On the other side, ESM explores all the space of solutions and finds the optimal one but with a very high-computational burden. A new PolPSI algorithm, named coherency matrix decomposition-based PolPSI (CMD-PolPSI), is proposed to achieve a compromise between phase optimization and computational cost. Its core idea is utilizing the polarimetric synthetic aperture radar (PolSAR) coherency matrix decomposition to determine the optimal polarization channel for each pixel. Three different PolSAR image sets of both full- (Barcelona) and dual-polarization (Murcia and Mexico City) are used to evaluate the performance of CMD-PolPSI. The results show that CMD-PolPSI presents better optimization results than the BEST method by using either or temporal mean coherence as phase quality metrics. Compared with the ESM algorithm, CMD-PolPSI is 255 times faster but its performance is not optimal. The influence of the number of available polarization channels and pixel's resolutions on the CMD-PolPSI performance is also discussed.Peer ReviewedPostprint (author's final draft
Satellite downlink scheduling problem: A case study
The synthetic aperture radar (SAR) technology enables satellites to
efficiently acquire high quality images of the Earth surface. This generates
significant communication traffic from the satellite to the ground stations,
and, thus, image downlinking often becomes the bottleneck in the efficiency of
the whole system. In this paper we address the downlink scheduling problem for
Canada's Earth observing SAR satellite, RADARSAT-2. Being an applied problem,
downlink scheduling is characterised with a number of constraints that make it
difficult not only to optimise the schedule but even to produce a feasible
solution. We propose a fast schedule generation procedure that abstracts the
problem specific constraints and provides a simple interface to optimisation
algorithms. By comparing empirically several standard meta-heuristics applied
to the problem, we select the most suitable one and show that it is clearly
superior to the approach currently in use.Comment: 23 page
- …
