8,613 research outputs found

    A 1.751.75 LP approximation for the Tree Augmentation Problem

    Full text link
    In the Tree Augmentation Problem (TAP) the goal is to augment a tree TT by a minimum size edge set FF from a given edge set EE such that TFT \cup F is 22-edge-connected. The best approximation ratio known for TAP is 1.51.5. In the more general Weighted TAP problem, FF should be of minimum weight. Weighted TAP admits several 22-approximation algorithms w.r.t. to the standard cut LP-relaxation, but for all of them the performance ratio of 22 is tight even for TAP. The problem is equivalent to the problem of covering a laminar set family. Laminar set families play an important role in the design of approximation algorithms for connectivity network design problems. In fact, Weighted TAP is the simplest connectivity network design problem for which a ratio better than 22 is not known. Improving this "natural" ratio is a major open problem, which may have implications on many other network design problems. It seems that achieving this goal requires finding an LP-relaxation with integrality gap better than 22, which is a long time open problem even for TAP. In this paper we introduce such an LP-relaxation and give an algorithm that computes a feasible solution for TAP of size at most 1.751.75 times the optimal LP value. This gives some hope to break the ratio 22 for the weighted case. Our algorithm computes some initial edge set by solving a partial system of constraints that form the integral edge-cover polytope, and then applies local search on 33-leaf subtrees to exchange some of the edges and to add additional edges. Thus we do not need to solve the LP, and the algorithm runs roughly in time required to find a minimum weight edge-cover in a general graph.Comment: arXiv admin note: substantial text overlap with arXiv:1507.0279

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201
    corecore