135,962 research outputs found
Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers.
We designed and synthesized a tetracene derivative 4-(tetracen-5-yl)benzoic acid (CPT) as a transmitter ligand used in PbS/PbSe nanocrystal (NC) sensitized upconversion of near infrared (NIR) photons. Under optimal conditions, comparing CPT functionalized NCs with unfunctionalized NCs as sensitizers, the upconversion quantum yield (QY) was enhanced 81 times for 2.9 nm PbS NCs from 0.021% to 1.7%, and 11 times for 2.5 nm PbSe NCs from 0.20% to 2.1%. The surface density of CPT controls the solubility of functionalized NCs and the upconversion QY. By increasing the concentration of CPT in the ligand exchange solution, the number of CPT ligand per NC increases. The upconversion QY is maximized at a transmitter density of 1.2 nm-2 for 2.9 nm PbS, and 0.32 nm-2 for 2.5 nm PbSe. Additional transmitter ligands inhibit photon upconversion due to triplet-triplet annihilation (TTA) between two neighboring CPT molecules on the NC surface. 2.1% is the highest reported QY for TTA-based photon upconversion in the NIR with the use of earth-abundant materials
An Efficient Synthesis and Photoelectric Properties of Green Carbon Quantum Dots with High Fluorescent Quantum Yield
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)To greatly improve the production quality and efficiency of carbon quantum dots (CQDs), and provide a new approach for the large-scale production of high-quality CQDs, green carbon quantum dots (g-CQDs) with high product yield (PY) and high fluorescent quantum yield (QY) were synthesized by an efficient one-step solvothermal method with 2,7-dihydroxynaphthalene as the carbon source and ethylenediamine as the nitrogen dopant in this study. The PY and QY of g-CQDs were optimised by adjusting reaction parameters such as an amount of added ethylenediamine, reaction temperature, and reaction duration. The results showed that the maximum PY and QY values of g-CQDs were achieved, which were 70.90% and 62.98%, respectively when the amount of added ethylenediamine, reaction temperature, and reaction duration were 4 mL, 180 °C, and 12 h, respectively. With the optimised QY value of g-CQDs, white light emitting diodes (white LEDs) were prepared by combining g-CQDs and blue chip. The colour rendering index of white LEDs reached 87, and the correlated colour temperature was 2520 K, which belongs to the warm white light area and is suitable for indoor lighting. These results indicate that g-CQDs have potential and wide application prospects in the field of white LEDs.Peer reviewedFinal Published versio
Resonance for Singular Perturbation Problems
Consider the resonance for a second-order equation εy"-xpy’+ qy = 0. Another proof is given for the necessity of the Matkowsky condition and the connection with a regular eigenvalue problem is established. Also, if p, q are analytic, necessary and sufficient conditions are derived
Photophysics and Inverted Solvatochromism of 7,7,8,8-Tetracyanoquinodimethane (TCNQ)
We report the absorption, fluorescence, and Raman spectroscopy of 7,7,8,8- tetracyanoquinodimethane (TCNQ) in a variety of solvents. The fluorescence quantum yields (QYs) of linear alkane solutions are similar to one another, but QY is shown to acutely decrease in other solvents with increasing polarities. The slope of the solvatochromic plot of absorption maxima is inverted from negative to positive with an increase in solvent polarity. A significant change in the frequency of carbon-carbon double bond stretching modes is not observed in Raman spectra of TCNQ in different solvents. The molar absorption coefficient is determined to calculate the oscillator strength of the absorption band. The radiative decay rate constant calculated from the oscillator strength is approximately ten times larger than that elucidated from the fluorescence lifetime and QY. These spectroscopic parameters reveal that the relaxation occurs from a Franck-Condon excited state to a distinct fluorescence emissive state with a smaller transition dipole moment
Variational ground states of the two-dimensional Hubbard model
Recent refinements of analytical and numerical methods have improved our
understanding of the ground-state phase diagram of the two-dimensional (2D)
Hubbard model. Here we focus on variational approaches, but comparisons with
both Quantum Cluster and Gaussian Monte Carlo methods are also made. Our own
ansatz leads to an antiferromagnetic ground state at half filling with a
slightly reduced staggered order parameter (as compared to simple mean-field
theory). Away from half filling, we find d-wave superconductivity, but confined
to densities where the Fermi surface passes through the antiferromagnetic zone
boundary (if hopping between both nearest-neighbour and next-nearest-neighbour
sites is considered). Our results agree surprisingly well with recent numerical
studies using the Quantum Cluster method. An interesting trend is found by
comparing gap parameters (antiferromagnetic or superconducting) obtained with
different variational wave functions. They vary by an order of magnitude and
thus cannot be taken as a characteristic energy scale. In contrast, the order
parameter is much less sensitive to the degree of sophistication of the
variational schemes, at least at and near half filling.Comment: 18 pages, 4 figures, to be published in New J. Phy
The scintillation and ionization yield of liquid xenon for nuclear recoils
XENON10 is an experiment designed to directly detect particle dark matter. It
is a dual phase (liquid/gas) xenon time-projection chamber with 3D position
imaging. Particle interactions generate a primary scintillation signal (S1) and
ionization signal (S2), which are both functions of the deposited recoil energy
and the incident particle type. We present a new precision measurement of the
relative scintillation yield \leff and the absolute ionization yield Q_y, for
nuclear recoils in xenon. A dark matter particle is expected to deposit energy
by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for
establishing the energy threshold of the experiment; this in turn determines
the sensitivity to particle dark matter. Our \leff measurement is in agreement
with recent theoretical predictions above 15 keV nuclear recoil energy, and the
energy threshold of the measurement is 4 keV. A knowledge of the ionization
yield \Qy is necessary to establish the trigger threshold of the experiment.
The ionization yield \Qy is measured in two ways, both in agreement with
previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods
The cone of Betti diagrams of bigraded artinian modules of codimension two
We describe the positive cone generated by bigraded Betti diagrams of
artinian modules of codimension two, whose resolutions become pure of a given
type when taking total degrees. If the differences of these total degrees, p
and q, are relatively prime, the extremal rays are parametrised by order ideals
in N^2 contained in the region px + qy < (p-1)(q-1). We also consider some
examples concerning artinian modules of codimension three.Comment: 15 page
- …
