135,962 research outputs found

    Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers.

    Get PDF
    We designed and synthesized a tetracene derivative 4-(tetracen-5-yl)benzoic acid (CPT) as a transmitter ligand used in PbS/PbSe nanocrystal (NC) sensitized upconversion of near infrared (NIR) photons. Under optimal conditions, comparing CPT functionalized NCs with unfunctionalized NCs as sensitizers, the upconversion quantum yield (QY) was enhanced 81 times for 2.9 nm PbS NCs from 0.021% to 1.7%, and 11 times for 2.5 nm PbSe NCs from 0.20% to 2.1%. The surface density of CPT controls the solubility of functionalized NCs and the upconversion QY. By increasing the concentration of CPT in the ligand exchange solution, the number of CPT ligand per NC increases. The upconversion QY is maximized at a transmitter density of 1.2 nm-2 for 2.9 nm PbS, and 0.32 nm-2 for 2.5 nm PbSe. Additional transmitter ligands inhibit photon upconversion due to triplet-triplet annihilation (TTA) between two neighboring CPT molecules on the NC surface. 2.1% is the highest reported QY for TTA-based photon upconversion in the NIR with the use of earth-abundant materials

    An Efficient Synthesis and Photoelectric Properties of Green Carbon Quantum Dots with High Fluorescent Quantum Yield

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)To greatly improve the production quality and efficiency of carbon quantum dots (CQDs), and provide a new approach for the large-scale production of high-quality CQDs, green carbon quantum dots (g-CQDs) with high product yield (PY) and high fluorescent quantum yield (QY) were synthesized by an efficient one-step solvothermal method with 2,7-dihydroxynaphthalene as the carbon source and ethylenediamine as the nitrogen dopant in this study. The PY and QY of g-CQDs were optimised by adjusting reaction parameters such as an amount of added ethylenediamine, reaction temperature, and reaction duration. The results showed that the maximum PY and QY values of g-CQDs were achieved, which were 70.90% and 62.98%, respectively when the amount of added ethylenediamine, reaction temperature, and reaction duration were 4 mL, 180 °C, and 12 h, respectively. With the optimised QY value of g-CQDs, white light emitting diodes (white LEDs) were prepared by combining g-CQDs and blue chip. The colour rendering index of white LEDs reached 87, and the correlated colour temperature was 2520 K, which belongs to the warm white light area and is suitable for indoor lighting. These results indicate that g-CQDs have potential and wide application prospects in the field of white LEDs.Peer reviewedFinal Published versio

    Resonance for Singular Perturbation Problems

    Get PDF
    Consider the resonance for a second-order equation εy"-xpy’+ qy = 0. Another proof is given for the necessity of the Matkowsky condition and the connection with a regular eigenvalue problem is established. Also, if p, q are analytic, necessary and sufficient conditions are derived

    Photophysics and Inverted Solvatochromism of 7,7,8,8-Tetracyanoquinodimethane (TCNQ)

    Get PDF
    We report the absorption, fluorescence, and Raman spectroscopy of 7,7,8,8- tetracyanoquinodimethane (TCNQ) in a variety of solvents. The fluorescence quantum yields (QYs) of linear alkane solutions are similar to one another, but QY is shown to acutely decrease in other solvents with increasing polarities. The slope of the solvatochromic plot of absorption maxima is inverted from negative to positive with an increase in solvent polarity. A significant change in the frequency of carbon-carbon double bond stretching modes is not observed in Raman spectra of TCNQ in different solvents. The molar absorption coefficient is determined to calculate the oscillator strength of the absorption band. The radiative decay rate constant calculated from the oscillator strength is approximately ten times larger than that elucidated from the fluorescence lifetime and QY. These spectroscopic parameters reveal that the relaxation occurs from a Franck-Condon excited state to a distinct fluorescence emissive state with a smaller transition dipole moment

    Variational ground states of the two-dimensional Hubbard model

    Get PDF
    Recent refinements of analytical and numerical methods have improved our understanding of the ground-state phase diagram of the two-dimensional (2D) Hubbard model. Here we focus on variational approaches, but comparisons with both Quantum Cluster and Gaussian Monte Carlo methods are also made. Our own ansatz leads to an antiferromagnetic ground state at half filling with a slightly reduced staggered order parameter (as compared to simple mean-field theory). Away from half filling, we find d-wave superconductivity, but confined to densities where the Fermi surface passes through the antiferromagnetic zone boundary (if hopping between both nearest-neighbour and next-nearest-neighbour sites is considered). Our results agree surprisingly well with recent numerical studies using the Quantum Cluster method. An interesting trend is found by comparing gap parameters (antiferromagnetic or superconducting) obtained with different variational wave functions. They vary by an order of magnitude and thus cannot be taken as a characteristic energy scale. In contrast, the order parameter is much less sensitive to the degree of sophistication of the variational schemes, at least at and near half filling.Comment: 18 pages, 4 figures, to be published in New J. Phy

    The scintillation and ionization yield of liquid xenon for nuclear recoils

    Get PDF
    XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield \leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our \leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield \Qy is necessary to establish the trigger threshold of the experiment. The ionization yield \Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods

    The cone of Betti diagrams of bigraded artinian modules of codimension two

    Full text link
    We describe the positive cone generated by bigraded Betti diagrams of artinian modules of codimension two, whose resolutions become pure of a given type when taking total degrees. If the differences of these total degrees, p and q, are relatively prime, the extremal rays are parametrised by order ideals in N^2 contained in the region px + qy < (p-1)(q-1). We also consider some examples concerning artinian modules of codimension three.Comment: 15 page
    corecore