512 research outputs found

    Security Aspects of Internet of Things aided Smart Grids: a Bibliometric Survey

    Full text link
    The integration of sensors and communication technology in power systems, known as the smart grid, is an emerging topic in science and technology. One of the critical issues in the smart grid is its increased vulnerability to cyber threats. As such, various types of threats and defense mechanisms are proposed in literature. This paper offers a bibliometric survey of research papers focused on the security aspects of Internet of Things (IoT) aided smart grids. To the best of the authors' knowledge, this is the very first bibliometric survey paper in this specific field. A bibliometric analysis of all journal articles is performed and the findings are sorted by dates, authorship, and key concepts. Furthermore, this paper also summarizes the types of cyber threats facing the smart grid, the various security mechanisms proposed in literature, as well as the research gaps in the field of smart grid security.Comment: The paper is published in Elsevier's Internet of Things journal. 25 pages + 20 pages of reference

    Quickest Anomaly Detection in Sensor Networks With Unlabeled Samples

    Full text link
    The problem of quickest anomaly detection in networks with unlabeled samples is studied. At some unknown time, an anomaly emerges in the network and changes the data-generating distribution of some unknown sensor. The data vector received by the fusion center at each time step undergoes some unknown and arbitrary permutation of its entries (unlabeled samples). The goal of the fusion center is to detect the anomaly with minimal detection delay subject to false alarm constraints. With unlabeled samples, existing approaches that combines local cumulative sum (CuSum) statistics cannot be used anymore. Several major questions include whether detection is still possible without the label information, if so, what is the fundamental limit and how to achieve that. Two cases with static and dynamic anomaly are investigated, where the sensor affected by the anomaly may or may not change with time. For the two cases, practical algorithms based on the ideas of mixture likelihood ratio and/or maximum likelihood estimate are constructed. Their average detection delays and false alarm rates are theoretically characterized. Universal lower bounds on the average detection delay for a given false alarm rate are also derived, which further demonstrate the asymptotic optimality of the two algorithms
    • …
    corecore