41 research outputs found

    Resource-Efficient Replication and Migration of Virtual Machines.

    Full text link
    Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized environment, but they are resource-expensive. Continuously replicating a VM's checkpointed state to a backup host maintains high-availability (HA) of the VM despite host failures, but checkpoint replication can generate significant network traffic. Each replicated VM also incurs a 100% memory overhead, since the backup unproductively reserves the same amount of memory to hold the redundant VM state. Live migration, though being widely used for load-balancing, power-saving, etc., can also generate excessive network traffic, by transferring VM state iteratively. In addition, it can incur a long completion time and degrade application performance. This thesis explores ways to replicate VMs for HA using resources efficiently, and to migrate VMs fast, with minimal execution disruption and using resources efficiently. First, we investigate the tradeoffs in using different compression methods to reduce the network traffic of checkpoint replication in a HA system. We evaluate gzip, delta and similarity compressions based on metrics that are specifically important in a HA system, and then suggest guidelines for their selection. Next, we propose HydraVM, a storage-based HA approach that eliminates the unproductive memory reservation made in backup hosts. HydraVM maintains a recent image of a protected VM in a shared storage by taking and consolidating incremental VM checkpoints. When a failure occurs, HydraVM quickly resumes the execution of a failed VM by loading a small amount of essential VM state from the storage. As the VM executes, the VM state not yet loaded is supplied on-demand. Finally, we propose application-assisted live migration, which skips transfer of VM memory that need not be migrated to execute running applications at the destination. We develop a generic framework for the proposed approach, and then use the framework to build JAVMM, a system that migrates VMs running Java applications skipping transfer of garbage in Java memory. Our evaluation results show that compared to Xen live migration, which is agnostic of running applications, JAVMM can reduce the completion time, network traffic and application downtime caused by Java VM migration, all by up to over 90%.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111575/1/karenhou_1.pd

    An Orthogonal Air Pollution Monitoring Method (OAPM) Based on LoRaWAN

    Get PDF
    International audienceHigh accuracy air pollution monitoring in a smart city requires the deployment of a huge number of sensors in this city. One of the most appropriate wireless technologies expected to support high density deployment is LoRaWAN which belongs to the Low Power Wide Area Network (LPWAN) family and offers long communication range, multi-year battery lifetime and low cost end devices. It has been designed for End Devices (EDs) and applications that need to send small amounts of data a few times per hour. However, a high number of end devices breaks the orthogonality of LoRaWAN transmissions, which was one of the main advantages of LoRaWAN. Hence, network performances are strongly impacted. To solve this problem, we propose a solution called OAPM (Orthogonal Air Pollution Monitoring) which ensures the orthogonality of LoRaWAN transmissions and provides accurate air pollution monitoring. In this paper, we show how to organize EDs into clusters and sub-clusters, assign transmission times to EDs, configurate and synchronize them, taking into account the specificities of LoRaWAN and the features of the air pollution monitoring application. Simulation results corroborate the very good behavior of OAPM

    Collision-Free Transmissions in an IoT Monitoring Application Based on LoRaWAN

    Get PDF
    International audienceWith the Internet of Things (IoT), the number of monitoring applications deployed is considerably increasing, whatever the field considered: smart city, smart agriculture, environment monitoring, air pollution monitoring, to name a few. The LoRaWAN (Long Range Wide Area Network)architecture with its long range communication, its robustness to interference and its reduced energy consumption is an excellent candidate to support such applications. However, if the number of end devices is high, the reliability of LoRaWAN, measured by the Packet Delivery Ratio (PDR), becomes unacceptable due to an excessive number of collisions. In this paper, we propose two different families of solutions ensuring collision-free transmissions. The first family is TDMA (Time-Division Multiple Access)-based. All clusters transmit in sequence and up to six end devices with different spreading factors belonging to the same cluster are allowed to transmit in parallel. The second family is FDMA (Frequency Divsion Multiple Access)-based. All clusters transmit in parallel, each cluster on its own frequency. Within each cluster, all end devices transmit in sequence. Their performance are compared in terms of PDR, energy consumption by end device and maximum number of end devices supported. Simulation results corroborate the theoretical results and show the high efficiency of the solutions proposed

    Improving Pan-African research and education networks through traffic engineering: A LISP/SDN approach

    Get PDF
    The UbuntuNet Alliance, a consortium of National Research and Education Networks (NRENs) runs an exclusive data network for education and research in east and southern Africa. Despite a high degree of route redundancy in the Alliance's topology, a large portion of Internet traffic between the NRENs is circuitously routed through Europe. This thesis proposes a performance-based strategy for dynamic ranking of inter-NREN paths to reduce latencies. The thesis makes two contributions: firstly, mapping Africa's inter-NREN topology and quantifying the extent and impact of circuitous routing; and, secondly, a dynamic traffic engineering scheme based on Software Defined Networking (SDN), Locator/Identifier Separation Protocol (LISP) and Reinforcement Learning. To quantify the extent and impact of circuitous routing among Africa's NRENs, active topology discovery was conducted. Traceroute results showed that up to 75% of traffic from African sources to African NRENs went through inter-continental routes and experienced much higher latencies than that of traffic routed within Africa. An efficient mechanism for topology discovery was implemented by incorporating prior knowledge of overlapping paths to minimize redundancy during measurements. Evaluation of the network probing mechanism showed a 47% reduction in packets required to complete measurements. An interactive geospatial topology visualization tool was designed to evaluate how NREN stakeholders could identify routes between NRENs. Usability evaluation showed that users were able to identify routes with an accuracy level of 68%. NRENs are faced with at least three problems to optimize traffic engineering, namely: how to discover alternate end-to-end paths; how to measure and monitor performance of different paths; and how to reconfigure alternate end-to-end paths. This work designed and evaluated a traffic engineering mechanism for dynamic discovery and configuration of alternate inter-NREN paths using SDN, LISP and Reinforcement Learning. A LISP/SDN based traffic engineering mechanism was designed to enable NRENs to dynamically rank alternate gateways. Emulation-based evaluation of the mechanism showed that dynamic path ranking was able to achieve 20% lower latencies compared to the default static path selection. SDN and Reinforcement Learning were used to enable dynamic packet forwarding in a multipath environment, through hop-by-hop ranking of alternate links based on latency and available bandwidth. The solution achieved minimum latencies with significant increases in aggregate throughput compared to static single path packet forwarding. Overall, this thesis provides evidence that integration of LISP, SDN and Reinforcement Learning, as well as ranking and dynamic configuration of paths could help Africa's NRENs to minimise latencies and to achieve better throughputs

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Creating a distributed network traffic analyser

    Get PDF
    This version is made available in accordance with publisher policies. Please cite only the published version using the reference above. Se

    Creating a distributed network traffic analyser

    Get PDF

    Iowa Heritage Illustrated, vol.92 no.2, Fall-Winter 2011

    Get PDF

    CPA\u27s handbook of fraud and commercial crime prevention

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1820/thumbnail.jp

    CPA\u27s handbook of fraud and commercial crime prevention

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1819/thumbnail.jp
    corecore