4 research outputs found

    Querying Probabilistic Ontologies with SPARQL

    Full text link
    In recent years a lot of efforts was put into the field of Semantic Web research to specify knowledge as precisely as possible. However, optimizing for precision alone is not sufficient. The handling of uncertain or incomplete information is getting more and more important and it promises to significantly improve the quality of query answering in Semantic Web applications. My plan is to develop a framework that extends the rich semantics offered by ontologies with probabilistic information, stores this in a probabilistic database and provides query answering with the help of query rewriting. In this proposal I describe how these three aspects can be combined. Especially, I am focusing on how uncertainty is incorporated into the ABox and how it is handled by the database and the rewriter during query answering

    pSPARQL: A Querying Language for Probabilistic RDF (Extended Abstract)

    Get PDF
    Abstract. In this paper, we present a querying language for probabilistic RDF databases, where each triple has a probability, called pSRARQL, built on SPAR-QL, recommended by W3C as a querying language for RDF databases. Firstly, we present the syntax and semantics of pSPARQL. Secondly, we define the query problem of pSPARQL corresponding to probabilities of solutions. Finally, we show that the query evaluation of general pSPARQL patterns is PSPACEcomplete

    Scalable integration of uncertainty reasoning and semantic web technologies

    Full text link
    In recent years formal logical standards for knowledge representation to model real world knowledge and domains and make them accessible for computers gained a lot of trac- tion. They provide an expressive logical framework for modeling, consistency checking, reasoning, and query answering, and have proven to be versatile methods to capture knowledge of various fields. Those formalisms and methods focus on specifying knowl- edge as precisely as possible. At the same time, many applications in particular on the Semantic Web have to deal with uncertainty in their data; and handling uncertain knowledge is crucial in many real- world domains. However, regular logic is unable to capture the real-world properly due to its inherent complexity and uncertainty, all the while handling uncertain or incomplete information is getting more and more important in applications like expert system, data integration or information extraction. The overall objective of this dissertation is to identify scenarios and datasets where methods that incorporate their inherent uncertainty improve results, and investigate approaches and tools that are suitable for the respective task. In summary, this work is set out to tackle the following objectives: 1. debugging uncertain knowledge bases in order to generate consistent knowledge graphs to make them accessible for logical reasoning, 2. combining probabilistic query answering and logical reasoning which in turn uses these consistent knowledge graphs to answer user queries, and 3. employing the aforementioned techniques to the problem of risk management in IT infrastructures, as a concrete real-world application. We show that in all those scenarios, users can benefit from incorporating uncertainty in the knowledge base. Furthermore, we conduct experiments that demonstrate the real- world scalability of the demonstrated approaches. Overall, we argue that integrating uncertainty and logical reasoning, despite being theoretically intractable, is feasible in real-world application and warrants further research

    Querying Probabilistic Ontologies with SPARQL

    No full text
    In recent years a lot of efforts was put into the field of Semantic Web research to specify knowledge as precisely as possible. However, optimizing for precision alone is not sufficient. The handling of uncertain or incomplete information is getting more and more important and it promises to significantly improve the quality of query answering in Semantic Web applications. My plan is to develop a framework that extends the rich semantics offered by ontologies with probabilistic information, stores this in a probabilistic database and provides query answering with the help of query rewriting. In this proposal I describe how these three aspects can be combined. Especially, I am focusing on how uncertainty is incorporated into the ABox and how it is handled by the database and the rewriter during query answering
    corecore