11 research outputs found

    Query-Efficient Black-Box Attack by Active Learning

    Full text link
    Deep neural network (DNN) as a popular machine learning model is found to be vulnerable to adversarial attack. This attack constructs adversarial examples by adding small perturbations to the raw input, while appearing unmodified to human eyes but will be misclassified by a well-trained classifier. In this paper, we focus on the black-box attack setting where attackers have almost no access to the underlying models. To conduct black-box attack, a popular approach aims to train a substitute model based on the information queried from the target DNN. The substitute model can then be attacked using existing white-box attack approaches, and the generated adversarial examples will be used to attack the target DNN. Despite its encouraging results, this approach suffers from poor query efficiency, i.e., attackers usually needs to query a huge amount of times to collect enough information for training an accurate substitute model. To this end, we first utilize state-of-the-art white-box attack methods to generate samples for querying, and then introduce an active learning strategy to significantly reduce the number of queries needed. Besides, we also propose a diversity criterion to avoid the sampling bias. Our extensive experimental results on MNIST and CIFAR-10 show that the proposed method can reduce more than 90%90\% of queries while preserve attacking success rates and obtain an accurate substitute model which is more than 85%85\% similar with the target oracle.Comment: 9 page

    A geometry-inspired decision-based attack

    Full text link
    Deep neural networks have recently achieved tremendous success in image classification. Recent studies have however shown that they are easily misled into incorrect classification decisions by adversarial examples. Adversaries can even craft attacks by querying the model in black-box settings, where no information about the model is released except its final decision. Such decision-based attacks usually require lots of queries, while real-world image recognition systems might actually restrict the number of queries. In this paper, we propose qFool, a novel decision-based attack algorithm that can generate adversarial examples using a small number of queries. The qFool method can drastically reduce the number of queries compared to previous decision-based attacks while reaching the same quality of adversarial examples. We also enhance our method by constraining adversarial perturbations in low-frequency subspace, which can make qFool even more computationally efficient. Altogether, we manage to fool commercial image recognition systems with a small number of queries, which demonstrates the actual effectiveness of our new algorithm in practice

    Projection & Probability-Driven Black-Box Attack

    Full text link
    Generating adversarial examples in a black-box setting retains a significant challenge with vast practical application prospects. In particular, existing black-box attacks suffer from the need for excessive queries, as it is non-trivial to find an appropriate direction to optimize in the high-dimensional space. In this paper, we propose Projection & Probability-driven Black-box Attack (PPBA) to tackle this problem by reducing the solution space and providing better optimization. For reducing the solution space, we first model the adversarial perturbation optimization problem as a process of recovering frequency-sparse perturbations with compressed sensing, under the setting that random noise in the low-frequency space is more likely to be adversarial. We then propose a simple method to construct a low-frequency constrained sensing matrix, which works as a plug-and-play projection matrix to reduce the dimensionality. Such a sensing matrix is shown to be flexible enough to be integrated into existing methods like NES and BanditsTD_{TD}. For better optimization, we perform a random walk with a probability-driven strategy, which utilizes all queries over the whole progress to make full use of the sensing matrix for a less query budget. Extensive experiments show that our method requires at most 24% fewer queries with a higher attack success rate compared with state-of-the-art approaches. Finally, the attack method is evaluated on the real-world online service, i.e., Google Cloud Vision API, which further demonstrates our practical potentials.Comment: CVPR202

    Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss

    Full text link
    Recent studies have highlighted that deep neural networks (DNNs) are vulnerable to adversarial examples. In this paper, we improve the robustness of DNNs by utilizing techniques of Distance Metric Learning. Specifically, we incorporate Triplet Loss, one of the most popular Distance Metric Learning methods, into the framework of adversarial training. Our proposed algorithm, Adversarial Training with Triplet Loss (AT2^2L), substitutes the adversarial example against the current model for the anchor of triplet loss to effectively smooth the classification boundary. Furthermore, we propose an ensemble version of AT2^2L, which aggregates different attack methods and model structures for better defense effects. Our empirical studies verify that the proposed approach can significantly improve the robustness of DNNs without sacrificing accuracy. Finally, we demonstrate that our specially designed triplet loss can also be used as a regularization term to enhance other defense methods

    Stealing Black-Box Functionality Using The Deep Neural Tree Architecture

    Full text link
    This paper makes a substantial step towards cloning the functionality of black-box models by introducing a Machine learning (ML) architecture named Deep Neural Trees (DNTs). This new architecture can learn to separate different tasks of the black-box model, and clone its task-specific behavior. We propose to train the DNT using an active learning algorithm to obtain faster and more sample-efficient training. In contrast to prior work, we study a complex "victim" black-box model based solely on input-output interactions, while at the same time the attacker and the victim model may have completely different internal architectures. The attacker is a ML based algorithm whereas the victim is a generally unknown module, such as a multi-purpose digital chip, complex analog circuit, mechanical system, software logic or a hybrid of these. The trained DNT module not only can function as the attacked module, but also provides some level of explainability to the cloned model due to the tree-like nature of the proposed architecture.Comment: 8 pages, 7 figures, 1 tabl

    Active Sentence Learning by Adversarial Uncertainty Sampling in Discrete Space

    Full text link
    In this paper, we focus on reducing the labeled data size for sentence learning. We argue that real-time uncertainty sampling of active learning is time-consuming, and delayed uncertainty sampling may lead to the ineffective sampling problem. We propose the adversarial uncertainty sampling in discrete space, in which sentences are mapped into the popular pre-trained language model encoding space. Our proposed approach can work in real-time and is more efficient than traditional uncertainty sampling. Experimental results on five datasets show that our proposed approach outperforms strong baselines and can achieve better uncertainty sampling effectiveness with acceptable running time.Comment: 10 pages, 3 figures, 4 table

    Extraction of Complex DNN Models: Real Threat or Boogeyman?

    Full text link
    Recently, machine learning (ML) has introduced advanced solutions to many domains. Since ML models provide business advantage to model owners, protecting intellectual property of ML models has emerged as an important consideration. Confidentiality of ML models can be protected by exposing them to clients only via prediction APIs. However, model extraction attacks can steal the functionality of ML models using the information leaked to clients through the results returned via the API. In this work, we question whether model extraction is a serious threat to complex, real-life ML models. We evaluate the current state-of-the-art model extraction attack (Knockoff nets) against complex models. We reproduce and confirm the results in the original paper. But we also show that the performance of this attack can be limited by several factors, including ML model architecture and the granularity of API response. Furthermore, we introduce a defense based on distinguishing queries used for Knockoff nets from benign queries. Despite the limitations of the Knockoff nets, we show that a more realistic adversary can effectively steal complex ML models and evade known defenses.Comment: 16 pages, 1 figure, Accepted for publication in AAAI-20 Workshop on Engineering Dependable and Secure Machine Learning Systems (AAAI-EDSMLS 2020

    Making targeted black-box evasion attacks effective and efficient

    Full text link
    We investigate how an adversary can optimally use its query budget for targeted evasion attacks against deep neural networks in a black-box setting. We formalize the problem setting and systematically evaluate what benefits the adversary can gain by using substitute models. We show that there is an exploration-exploitation tradeoff in that query efficiency comes at the cost of effectiveness. We present two new attack strategies for using substitute models and show that they are as effective as previous query-only techniques but require significantly fewer queries, by up to three orders of magnitude. We also show that an agile adversary capable of switching through different attack techniques can achieve pareto-optimal efficiency. We demonstrate our attack against Google Cloud Vision showing that the difficulty of black-box attacks against real-world prediction APIs is significantly easier than previously thought (requiring approximately 500 queries instead of approximately 20,000 as in previous works).Comment: 12 pages, 10 figure

    Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries

    Full text link
    We study adversarial examples in a black-box setting where the adversary only has API access to the target model and each query is expensive. Prior work on black-box adversarial examples follows one of two main strategies: (1) transfer attacks use white-box attacks on local models to find candidate adversarial examples that transfer to the target model, and (2) optimization-based attacks use queries to the target model and apply optimization techniques to search for adversarial examples. We propose hybrid attacks that combine both strategies, using candidate adversarial examples from local models as starting points for optimization-based attacks and using labels learned in optimization-based attacks to tune local models for finding transfer candidates. We empirically demonstrate on the MNIST, CIFAR10, and ImageNet datasets that our hybrid attack strategy reduces cost and improves success rates. We also introduce a seed prioritization strategy which enables attackers to focus their resources on the most promising seeds. Combining hybrid attacks with our seed prioritization strategy enables batch attacks that can reliably find adversarial examples with only a handful of queries.Comment: USENIX Security 2020 camera-ready version, Code available at: https://github.com/suyeecav/Hybrid-Attac

    Security and Privacy for Artificial Intelligence: Opportunities and Challenges

    Full text link
    The increased adoption of Artificial Intelligence (AI) presents an opportunity to solve many socio-economic and environmental challenges; however, this cannot happen without securing AI-enabled technologies. In recent years, most AI models are vulnerable to advanced and sophisticated hacking techniques. This challenge has motivated concerted research efforts into adversarial AI, with the aim of developing robust machine and deep learning models that are resilient to different types of adversarial scenarios. In this paper, we present a holistic cyber security review that demonstrates adversarial attacks against AI applications, including aspects such as adversarial knowledge and capabilities, as well as existing methods for generating adversarial examples and existing cyber defence models. We explain mathematical AI models, especially new variants of reinforcement and federated learning, to demonstrate how attack vectors would exploit vulnerabilities of AI models. We also propose a systematic framework for demonstrating attack techniques against AI applications and reviewed several cyber defences that would protect AI applications against those attacks. We also highlight the importance of understanding the adversarial goals and their capabilities, especially the recent attacks against industry applications, to develop adaptive defences that assess to secure AI applications. Finally, we describe the main challenges and future research directions in the domain of security and privacy of AI technologies
    corecore