124,595 research outputs found
The Effectiveness of Concept Based Search for Video Retrieval
In this paper we investigate how a small number of high-level concepts\ud
derived for video shots, such as Sport. Face.Indoor. etc., can be used effectively for ad hoc search in video material. We will answer the following questions: 1) Can we automatically construct concept queries from ordinary text queries? 2) What is the best way to combine evidence from single concept detectors into final search results? We evaluated algorithms for automatic concept query formulation using WordNet based concept extraction, and we evaluated algorithms for fast, on-line combination of concepts. Experimental results on data from the TREC Video 2005 workshop and 25 test users show the following. 1) Automatic query formulation through WordNet based concept extraction can achieve comparable results to user created query concepts and 2) Combination methods that take neighboring shots into account outperform more simple combination methods
Efficient and Provable Multi-Query Optimization
Complex queries for massive data analysis jobs have become increasingly
commonplace. Many such queries contain com- mon subexpressions, either within a
single query or among multiple queries submitted as a batch. Conventional query
optimizers do not exploit these subexpressions and produce sub-optimal plans.
The problem of multi-query optimization (MQO) is to generate an optimal
combined evaluation plan by computing common subexpressions once and reusing
them. Exhaustive algorithms for MQO explore an O(n^n) search space. Thus, this
problem has primarily been tackled using various heuristic algorithms, without
providing any theoretical guarantees on the quality of their solution. In this
paper, instead of the conventional cost minimization problem, we treat the
problem as maximizing a linear transformation of the cost function. We propose
a greedy algorithm for this transformed formulation of the problem, which under
weak, intuitive assumptions, provides an approximation factor guarantee for
this formulation. We go on to show that this factor is optimal, unless P = NP.
Another noteworthy point about our algorithm is that it can be easily
incorporated into existing transformation-based optimizers. We finally propose
optimizations which can be used to improve the efficiency of our algorithm
Algebraic optimization of recursive queries
Over the past few years, much attention has been paid to deductive databases. They offer a logic-based interface, and allow formulation of complex recursive queries. However, they do not offer appropriate update facilities, and do not support existing applications. To overcome these problems an SQL-like interface is required besides a logic-based interface.\ud
\ud
In the PRISMA project we have developed a tightly-coupled distributed database, on a multiprocessor machine, with two user interfaces: SQL and PRISMAlog. Query optimization is localized in one component: the relational query optimizer. Therefore, we have defined an eXtended Relational Algebra that allows recursive query formulation and can also be used for expressing executable schedules, and we have developed algebraic optimization strategies for recursive queries. In this paper we describe an optimization strategy that rewrites regular (in the context of formal grammars) mutually recursive queries into standard Relational Algebra and transitive closure operations. We also describe how to push selections into the resulting transitive closure operations.\ud
\ud
The reason we focus on algebraic optimization is that, in our opinion, the new generation of advanced database systems will be built starting from existing state-of-the-art relational technology, instead of building a completely new class of systems
Reply With: Proactive Recommendation of Email Attachments
Email responses often contain items-such as a file or a hyperlink to an
external document-that are attached to or included inline in the body of the
message. Analysis of an enterprise email corpus reveals that 35% of the time
when users include these items as part of their response, the attachable item
is already present in their inbox or sent folder. A modern email client can
proactively retrieve relevant attachable items from the user's past emails
based on the context of the current conversation, and recommend them for
inclusion, to reduce the time and effort involved in composing the response. In
this paper, we propose a weakly supervised learning framework for recommending
attachable items to the user. As email search systems are commonly available,
we constrain the recommendation task to formulating effective search queries
from the context of the conversations. The query is submitted to an existing IR
system to retrieve relevant items for attachment. We also present a novel
strategy for generating labels from an email corpus---without the need for
manual annotations---that can be used to train and evaluate the query
formulation model. In addition, we describe a deep convolutional neural network
that demonstrates satisfactory performance on this query formulation task when
evaluated on the publicly available Avocado dataset and a proprietary dataset
of internal emails obtained through an employee participation program.Comment: CIKM2017. Proceedings of the 26th ACM International Conference on
Information and Knowledge Management. 201
On the Power of Non-Adaptive Learning Graphs
We introduce a notion of the quantum query complexity of a certificate
structure. This is a formalisation of a well-known observation that many
quantum query algorithms only require the knowledge of the disposition of
possible certificates in the input string, not the precise values therein.
Next, we derive a dual formulation of the complexity of a non-adaptive
learning graph, and use it to show that non-adaptive learning graphs are tight
for all certificate structures. By this, we mean that there exists a function
possessing the certificate structure and such that a learning graph gives an
optimal quantum query algorithm for it.
For a special case of certificate structures generated by certificates of
bounded size, we construct a relatively general class of functions having this
property. The construction is based on orthogonal arrays, and generalizes the
quantum query lower bound for the -sum problem derived recently in
arXiv:1206.6528.
Finally, we use these results to show that the learning graph for the
triangle problem from arXiv:1210.1014 is almost optimal in these settings. This
also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all
certificate structures, a bug in the proof of Proposition 17 fixe
Oyster – Sharing and Re-using Ontologies in a Peer-to-Peer Community
In this paper, we present Oyster, a Peer-to-Peer system for
exchanging ontology metadata among communities in the
Semantic Web. Oyster exploits semantic web techniques in data
representation, query formulation and query result presentation to provide an online solution for sharing ontologies, thus assisting researchers in re-using existing ontologies
- …
