3 research outputs found

    XML-Based Heterogeneous Database Integration For Data Warehouse Creation

    Get PDF

    Distributed First Order Logic

    Full text link
    Distributed First Order Logic (DFOL) has been introduced more than ten years ago with the purpose of formalising distributed knowledge-based systems, where knowledge about heterogeneous domains is scattered into a set of interconnected modules. DFOL formalises the knowledge contained in each module by means of first-order theories, and the interconnections between modules by means of special inference rules called bridge rules. Despite their restricted form in the original DFOL formulation, bridge rules have influenced several works in the areas of heterogeneous knowledge integration, modular knowledge representation, and schema/ontology matching. This, in turn, has fostered extensions and modifications of the original DFOL that have never been systematically described and published. This paper tackles the lack of a comprehensive description of DFOL by providing a systematic account of a completely revised and extended version of the logic, together with a sound and complete axiomatisation of a general form of bridge rules based on Natural Deduction. The resulting DFOL framework is then proposed as a clear formal tool for the representation of and reasoning about distributed knowledge and bridge rules

    INCREMENTAL QUERY PROCESSING IN INFORMATION FUSION SYSTEMS

    Get PDF
    This dissertation studies the methodology and techniques of information retrieval in fusion systems where information referring to same objects is assessed on the basis of data from multiple heterogeneous data sources. A wide range of important applications can be categorized as information fusion systems e.g. multisensor surveillance system, local search system, multisource medical diagnose system, and so on. Up to the time of this dissertation, most information retrieval methods in fusion systems are highly domain specific, and most query systems do not address fusion problem with enough efforts. In this dissertation, I describe a broadly applicable query based information retrieval approach in general fusion systems: user information needs are interpreted as fusion queries, and the query processing techniques e.g. source dependence graph (SDG), query refinement and optimization are described. Aiming to remove the query building bottleneck, a novel incremental query method is proposed, which can eliminate the accumulated complexity in query building as well as in query execution. Query pattern is defined to capture and reuse repeated structures in the incremental queries. Several new techniques for query pattern matching and learning are described in detail. Some important experiments in a real-world multisensor fusion system, i.e. the intelligent vehicle tracking (IVET) system, have been presented to validate the proposed methodology and techniques
    corecore