13,578 research outputs found

    Science Models as Value-Added Services for Scholarly Information Systems

    Full text link
    The paper introduces scholarly Information Retrieval (IR) as a further dimension that should be considered in the science modeling debate. The IR use case is seen as a validation model of the adequacy of science models in representing and predicting structure and dynamics in science. Particular conceptualizations of scholarly activity and structures in science are used as value-added search services to improve retrieval quality: a co-word model depicting the cognitive structure of a field (used for query expansion), the Bradford law of information concentration, and a model of co-authorship networks (both used for re-ranking search results). An evaluation of the retrieval quality when science model driven services are used turned out that the models proposed actually provide beneficial effects to retrieval quality. From an IR perspective, the models studied are therefore verified as expressive conceptualizations of central phenomena in science. Thus, it could be shown that the IR perspective can significantly contribute to a better understanding of scholarly structures and activities.Comment: 26 pages, to appear in Scientometric

    SIGIR: scholar vs. scholars' interpretation

    Get PDF
    Google Scholar allows researchers to search through a free and extensive source of information on scientific publications. In this paper we show that within the limited context of SIGIR proceedings, the rankings created by Google Scholar are both significantly different and very negatively correlated with those of domain experts

    The Open Research Web: A Preview of the Optimal and the Inevitable

    Get PDF
    The multiple online research impact metrics we are developing will allow the rich new database , the Research Web, to be navigated, analyzed, mined and evaluated in powerful new ways that were not even conceivable in the paper era – nor even in the online era, until the database and the tools became openly accessible for online use by all: by researchers, research institutions, research funders, teachers, students, and even by the general public that funds the research and for whose benefit it is being conducted: Which research is being used most? By whom? Which research is growing most quickly? In what direction? under whose influence? Which research is showing immediate short-term usefulness, which shows delayed, longer term usefulness, and which has sustained long-lasting impact? Which research and researchers are the most authoritative? Whose research is most using this authoritative research, and whose research is the authoritative research using? Which are the best pointers (“hubs”) to the authoritative research? Is there any way to predict what research will have later citation impact (based on its earlier download impact), so junior researchers can be given resources before their work has had a chance to make itself felt through citations? Can research trends and directions be predicted from the online database? Can text content be used to find and compare related research, for influence, overlap, direction? Can a layman, unfamiliar with the specialized content of a field, be guided to the most relevant and important work? These are just a sample of the new online-age questions that the Open Research Web will begin to answer

    LODE: Linking Digital Humanities Content to the Web of Data

    Full text link
    Numerous digital humanities projects maintain their data collections in the form of text, images, and metadata. While data may be stored in many formats, from plain text to XML to relational databases, the use of the resource description framework (RDF) as a standardized representation has gained considerable traction during the last five years. Almost every digital humanities meeting has at least one session concerned with the topic of digital humanities, RDF, and linked data. While most existing work in linked data has focused on improving algorithms for entity matching, the aim of the LinkedHumanities project is to build digital humanities tools that work "out of the box," enabling their use by humanities scholars, computer scientists, librarians, and information scientists alike. With this paper, we report on the Linked Open Data Enhancer (LODE) framework developed as part of the LinkedHumanities project. With LODE we support non-technical users to enrich a local RDF repository with high-quality data from the Linked Open Data cloud. LODE links and enhances the local RDF repository without compromising the quality of the data. In particular, LODE supports the user in the enhancement and linking process by providing intuitive user-interfaces and by suggesting high-quality linking candidates using tailored matching algorithms. We hope that the LODE framework will be useful to digital humanities scholars complementing other digital humanities tools

    Popular and/or Prestigious? Measures of Scholarly Esteem

    Get PDF
    Citation analysis does not generally take the quality of citations into account: all citations are weighted equally irrespective of source. However, a scholar may be highly cited but not highly regarded: popularity and prestige are not identical measures of esteem. In this study we define popularity as the number of times an author is cited and prestige as the number of times an author is cited by highly cited papers. Information Retrieval (IR) is the test field. We compare the 40 leading researchers in terms of their popularity and prestige over time. Some authors are ranked high on prestige but not on popularity, while others are ranked high on popularity but not on prestige. We also relate measures of popularity and prestige to date of Ph.D. award, number of key publications, organizational affiliation, receipt of prizes/honors, and gender.Comment: 26 pages, 5 figure

    PageRank: Standing on the shoulders of giants

    Full text link
    PageRank is a Web page ranking technique that has been a fundamental ingredient in the development and success of the Google search engine. The method is still one of the many signals that Google uses to determine which pages are most important. The main idea behind PageRank is to determine the importance of a Web page in terms of the importance assigned to the pages hyperlinking to it. In fact, this thesis is not new, and has been previously successfully exploited in different contexts. We review the PageRank method and link it to some renowned previous techniques that we have found in the fields of Web information retrieval, bibliometrics, sociometry, and econometrics
    • 

    corecore