7,934 research outputs found

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Vectorwise: Beyond Column Stores

    Get PDF
    textabstractThis paper tells the story of Vectorwise, a high-performance analytical database system, from multiple perspectives: its history from academic project to commercial product, the evolution of its technical architecture, customer reactions to the product and its future research and development roadmap. One take-away from this story is that the novelty in Vectorwise is much more than just column-storage: it boasts many query processing innovations in its vectorized execution model, and an adaptive mixed row/column data storage model with indexing support tailored to analytical workloads. Another one is that there is a long road from research prototype to commercial product, though database research continues to achieve a strong innovative influence on product development

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Parallel Evaluation of Multi-join Queries

    Get PDF
    A number of execution strategies for parallel evaluation of multi-join queries have been proposed in the literature. In this paper we give a comparative performance evaluation of four execution strategies by implementing all of them on the same parallel database system, PRISMA/DB. Experiments have been done up to 80 processors. These strategies, coming from the literature, are named: Sequential Parallel, Synchronous Execution, Segmented Right-Deep, and Full Parallel. Based on the experiments clear guidelines are given when to use which strategy. This is an extended abstract; the full paper appeared in Proc. ACM SIGMOD'94, Minneapolis, Minnesota, May 24–27, 199

    Shared Arrangements: practical inter-query sharing for streaming dataflows

    Full text link
    Current systems for data-parallel, incremental processing and view maintenance over high-rate streams isolate the execution of independent queries. This creates unwanted redundancy and overhead in the presence of concurrent incrementally maintained queries: each query must independently maintain the same indexed state over the same input streams, and new queries must build this state from scratch before they can begin to emit their first results. This paper introduces shared arrangements: indexed views of maintained state that allow concurrent queries to reuse the same in-memory state without compromising data-parallel performance and scaling. We implement shared arrangements in a modern stream processor and show order-of-magnitude improvements in query response time and resource consumption for interactive queries against high-throughput streams, while also significantly improving performance in other domains including business analytics, graph processing, and program analysis
    corecore