42,652 research outputs found
Efficient and Effective Query Auto-Completion
Query Auto-Completion (QAC) is an ubiquitous feature of modern textual search
systems, suggesting possible ways of completing the query being typed by the
user. Efficiency is crucial to make the system have a real-time responsiveness
when operating in the million-scale search space. Prior work has extensively
advocated the use of a trie data structure for fast prefix-search operations in
compact space. However, searching by prefix has little discovery power in that
only completions that are prefixed by the query are returned. This may impact
negatively the effectiveness of the QAC system, with a consequent monetary loss
for real applications like Web Search Engines and eCommerce. In this work we
describe the implementation that empowers a new QAC system at eBay, and discuss
its efficiency/effectiveness in relation to other approaches at the
state-of-the-art. The solution is based on the combination of an inverted index
with succinct data structures, a much less explored direction in the
literature. This system is replacing the previous implementation based on
Apache SOLR that was not always able to meet the required
service-level-agreement.Comment: Published in SIGIR 202
Personalized neural language models for real-world query auto completion
Query auto completion (QAC) systems are a standard part of search engines in
industry, helping users formulate their query. Such systems update their
suggestions after the user types each character, predicting the user's intent
using various signals - one of the most common being popularity. Recently, deep
learning approaches have been proposed for the QAC task, to specifically
address the main limitation of previous popularity-based methods: the inability
to predict unseen queries. In this work we improve previous methods based on
neural language modeling, with the goal of building an end-to-end system. We
particularly focus on using real-world data by integrating user information for
personalized suggestions when possible. We also make use of time information
and study how to increase diversity in the suggestions while studying the
impact on scalability. Our empirical results demonstrate a marked improvement
on two separate datasets over previous best methods in both accuracy and
scalability, making a step towards neural query auto-completion in production
search engines.Comment: To appear in NAACL-HLT 201
Intent Models for Contextualising and Diversifying Query Suggestions
The query suggestion or auto-completion mechanisms help users to type less
while interacting with a search engine. A basic approach that ranks suggestions
according to their frequency in the query logs is suboptimal. Firstly, many
candidate queries with the same prefix can be removed as redundant. Secondly,
the suggestions can also be personalised based on the user's context. These two
directions to improve the aforementioned mechanisms' quality can be in
opposition: while the latter aims to promote suggestions that address search
intents that a user is likely to have, the former aims to diversify the
suggestions to cover as many intents as possible. We introduce a
contextualisation framework that utilises a short-term context using the user's
behaviour within the current search session, such as the previous query, the
documents examined, and the candidate query suggestions that the user has
discarded. This short-term context is used to contextualise and diversify the
ranking of query suggestions, by modelling the user's information need as a
mixture of intent-specific user models. The evaluation is performed offline on
a set of approximately 1.0M test user sessions. Our results suggest that the
proposed approach significantly improves query suggestions compared to the
baseline approach.Comment: A short version of this paper was presented at CIKM 201
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion
Users may strive to formulate an adequate textual query for their information
need. Search engines assist the users by presenting query suggestions. To
preserve the original search intent, suggestions should be context-aware and
account for the previous queries issued by the user. Achieving context
awareness is challenging due to data sparsity. We present a probabilistic
suggestion model that is able to account for sequences of previous queries of
arbitrary lengths. Our novel hierarchical recurrent encoder-decoder
architecture allows the model to be sensitive to the order of queries in the
context while avoiding data sparsity. Additionally, our model can suggest for
rare, or long-tail, queries. The produced suggestions are synthetic and are
sampled one word at a time, using computationally cheap decoding techniques.
This is in contrast to current synthetic suggestion models relying upon machine
learning pipelines and hand-engineered feature sets. Results show that it
outperforms existing context-aware approaches in a next query prediction
setting. In addition to query suggestion, our model is general enough to be
used in a variety of other applications.Comment: To appear in Conference of Information Knowledge and Management
(CIKM) 201
Learning to Attend, Copy, and Generate for Session-Based Query Suggestion
Users try to articulate their complex information needs during search
sessions by reformulating their queries. To make this process more effective,
search engines provide related queries to help users in specifying the
information need in their search process. In this paper, we propose a
customized sequence-to-sequence model for session-based query suggestion. In
our model, we employ a query-aware attention mechanism to capture the structure
of the session context. is enables us to control the scope of the session from
which we infer the suggested next query, which helps not only handle the noisy
data but also automatically detect session boundaries. Furthermore, we observe
that, based on the user query reformulation behavior, within a single session a
large portion of query terms is retained from the previously submitted queries
and consists of mostly infrequent or unseen terms that are usually not included
in the vocabulary. We therefore empower the decoder of our model to access the
source words from the session context during decoding by incorporating a copy
mechanism. Moreover, we propose evaluation metrics to assess the quality of the
generative models for query suggestion. We conduct an extensive set of
experiments and analysis. e results suggest that our model outperforms the
baselines both in terms of the generating queries and scoring candidate queries
for the task of query suggestion.Comment: Accepted to be published at The 26th ACM International Conference on
Information and Knowledge Management (CIKM2017
SQL Query Completion for Data Exploration
Within the big data tsunami, relational databases and SQL are still there and
remain mandatory in most of cases for accessing data. On the one hand, SQL is
easy-to-use by non specialists and allows to identify pertinent initial data at
the very beginning of the data exploration process. On the other hand, it is
not always so easy to formulate SQL queries: nowadays, it is more and more
frequent to have several databases available for one application domain, some
of them with hundreds of tables and/or attributes. Identifying the pertinent
conditions to select the desired data, or even identifying relevant attributes
is far from trivial. To make it easier to write SQL queries, we propose the
notion of SQL query completion: given a query, it suggests additional
conditions to be added to its WHERE clause. This completion is semantic, as it
relies on the data from the database, unlike current completion tools that are
mostly syntactic. Since the process can be repeated over and over again --
until the data analyst reaches her data of interest --, SQL query completion
facilitates the exploration of databases. SQL query completion has been
implemented in a SQL editor on top of a database management system. For the
evaluation, two questions need to be studied: first, does the completion speed
up the writing of SQL queries? Second , is the completion easily adopted by
users? A thorough experiment has been conducted on a group of 70 computer
science students divided in two groups (one with the completion and the other
one without) to answer those questions. The results are positive and very
promising
- …
