4 research outputs found

    CryptDB: A Practical Encrypted Relational DBMS

    Get PDF
    CryptDB is a DBMS that provides provable and practical privacy in the face of a compromised database server or curious database administrators. CryptDB works by executing SQL queries over encrypted data. At its core are three novel ideas: an SQL-aware encryption strategy that maps SQL operations to encryption schemes, adjustable query-based encryption which allows CryptDB to adjust the encryption level of each data item based on user queries, and onion encryption to efficiently change data encryption levels. CryptDB only empowers the server to execute queries that the users requested, and achieves maximum privacy given the mix of queries issued by the users. The database server fully evaluates queries on encrypted data and sends the result back to the client for final decryption; client machines do not perform any query processing and client-side applications run unchanged. Our evaluation shows that CryptDB has modest overhead: on the TPC-C benchmark on Postgres, CryptDB reduces throughput by 27% compared to regular Postgres. Importantly, CryptDB does not change the innards of existing DBMSs: we realized the implementation of CryptDB using client-side query rewriting/encrypting, user-defined functions, and server-side tables for public key information. As such, CryptDB is portable; porting CryptDB to MySQL required changing 86 lines of code, mostly at the connectivity layer

    Health Participatory Sensing Networks for Mobile Device Public Health Data Collection and Intervention

    Get PDF
    The pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on sensor-based collection of health data for personal fitness and personal healthcare feedback purposes. However, to date there has not been a detailed investigation of how such smartphones and sensors can be utilized for public health data collection. Unlike most sensing applications, in the case of public health, capturing comprehensive and detailed data is not a necessity, as aggregate data alone is in many cases sufficient for public health purposes. As such, public health data has the characteristic of being capturable whilst still not infringing privacy, as the detailed data of individuals that may allow re-identification is not needed, but rather only aggregate, de-identified and non-unique data for an individual. These types of public health data collection provide the challenge of the need to be flexible enough to answer a range of public health queries, while ensuring the level of detail returned preserves privacy. Additionally, the distribution of public health data collection request and other information to the participants without identifying the individual is a core requirement. An additional requirement for health participatory sensing networks is the ability to perform public health interventions. As with data collection, this needs to be completed in a non-identifying and privacy preserving manner. This thesis proposes a solution to these challenges, whereby a form of query assurance provides private and secure distribution of data collection requests and public health interventions to participants. While an additional, privacy preserving threshold approach to local processing of data prior to submission is used to provide re-identification protection for the participant. The evaluation finds that with manageable overheads, minimal reduction in the detail of collected data and strict communication privacy; privacy and anonymity can be preserved. This is significant for the field of participatory health sensing as a major concern of participants is most often real or perceived privacy risks of contribution

    Query Assurance Verification for Dynamic Outsourced XML Databases

    No full text
    corecore