411 research outputs found

    Robust face recognition using convolutional neural networks combined with Krawtchouk moments

    Get PDF
    Face recognition is a challenging task due to the complexity of pose variations, occlusion and the variety of face expressions performed by distinct subjects. Thus, many features have been proposed, however each feature has its own drawbacks. Therefore, in this paper, we propose a robust model called Krawtchouk moments convolutional neural networks (KMCNN) for face recognition. Our model is divided into two main steps. Firstly, we use 2D discrete orthogonal Krawtchouk moments to represent features. Then, we fed it into convolutional neural networks (CNN) for classification. The main goal of the proposed approach is to improve the classification accuracy of noisy grayscale face images. In fact, Krawtchouk moments are less sensitive to noisy effects. Moreover, they can extract pertinent features from an image using only low orders. To investigate the robustness of the proposed approach, two types of noise (salt and pepper and speckle) are added to three datasets (YaleB extended, our database of faces (ORL), and a subset of labeled faces in the wild (LFW)). Experimental results show that KMCNN is flexible and performs significantly better than using just CNN or when we combine it with other discrete moments such as Tchebichef, Hahn, Racah moments in most densities of noises

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Towards Object-Centric Scene Understanding

    Get PDF
    Visual perception for autonomous agents continues to attract community attention due to the disruptive technologies and the wide applicability of such solutions. Autonomous Driving (AD), a major application in this domain, promises to revolutionize our approach to mobility while bringing critical advantages in limiting accident fatalities. Fueled by recent advances in Deep Learning (DL), more computer vision tasks are being addressed using a learning paradigm. Deep Neural Networks (DNNs) succeeded consistently in pushing performances to unprecedented levels and demonstrating the ability of such approaches to generalize to an increasing number of difficult problems, such as 3D vision tasks. In this thesis, we address two main challenges arising from the current approaches. Namely, the computational complexity of multi-task pipelines, and the increasing need for manual annotations. On the one hand, AD systems need to perceive the surrounding environment on different levels of detail and, subsequently, take timely actions. This multitasking further limits the time available for each perception task. On the other hand, the need for universal generalization of such systems to massively diverse situations requires the use of large-scale datasets covering long-tailed cases. Such requirement renders the use of traditional supervised approaches, despite the data readily available in the AD domain, unsustainable in terms of annotation costs, especially for 3D tasks. Driven by the AD environment nature and the complexity dominated (unlike indoor scenes) by the presence of other scene elements (mainly cars and pedestrians) we focus on the above-mentioned challenges in object-centric tasks. We, then, situate our contributions appropriately in fast-paced literature, while supporting our claims with extensive experimental analysis leveraging up-to-date state-of-the-art results and community-adopted benchmarks

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome Parkfunktionalität in einem realen Versuchsträger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken über eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren Datensätze dieser Annotationsebene und Radarspezifikation öffentlich verfügbar. Das überwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstützt. Für die kohärente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrückt. Ein speziell für Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM für beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen Parkfunktionalität evaluiert. Im Durchschnitt über 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher Manöverlänge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% übertrifft. Die Kartengenauigkeit von veränderlichen, neukartierten Orten über eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. Für das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    Estrategias de visión por computador para la estimación de pose en el contexto de aplicaciones robóticas industriales: avances en el uso de modelos tanto clásicos como de Deep Learning en imágenes 2D

    Get PDF
    184 p.La visión por computador es una tecnología habilitadora que permite a los robots y sistemas autónomos percibir su entorno. Dentro del contexto de la industria 4.0 y 5.0, la visión por ordenador es esencial para la automatización de procesos industriales. Entre las técnicas de visión por computador, la detección de objetos y la estimación de la pose 6D son dos de las más importantes para la automatización de procesos industriales. Para dar respuesta a estos retos, existen dos enfoques principales: los métodos clásicos y los métodos de aprendizaje profundo. Los métodos clásicos son robustos y precisos, pero requieren de una gran cantidad de conocimiento experto para su desarrollo. Por otro lado, los métodos de aprendizaje profundo son fáciles de desarrollar, pero requieren de una gran cantidad de datos para su entrenamiento.En la presente memoria de tesis se presenta una revisión de la literatura sobre técnicas de visión por computador para la detección de objetos y la estimación de la pose 6D. Además se ha dado respuesta a los siguientes retos: (1) estimación de pose mediante técnicas de visión clásicas, (2) transferencia de aprendizaje de modelos 2D a 3D, (3) la utilización de datos sintéticos para entrenar modelos de aprendizaje profundo y (4) la combinación de técnicas clásicas y de aprendizaje profundo. Para ello, se han realizado contribuciones en revistas de alto impacto que dan respuesta a los anteriores retos

    Enhancing Mesh Deformation Realism: Dynamic Mesostructure Detailing and Procedural Microstructure Synthesis

    Get PDF
    Propomos uma solução para gerar dados de mapas de relevo dinâmicos para simular deformações em superfícies macias, com foco na pele humana. A solução incorpora a simulação de rugas ao nível mesoestrutural e utiliza texturas procedurais para adicionar detalhes de microestrutura estáticos. Oferece flexibilidade além da pele humana, permitindo a geração de padrões que imitam deformações em outros materiais macios, como couro, durante a animação. As soluções existentes para simular rugas e pistas de deformação frequentemente dependem de hardware especializado, que é dispendioso e de difícil acesso. Além disso, depender exclusivamente de dados capturados limita a direção artística e dificulta a adaptação a mudanças. Em contraste, a solução proposta permite a síntese dinâmica de texturas que se adaptam às deformações subjacentes da malha de forma fisicamente plausível. Vários métodos foram explorados para sintetizar rugas diretamente na geometria, mas sofrem de limitações como auto-interseções e maiores requisitos de armazenamento. A intervenção manual de artistas na criação de mapas de rugas e mapas de tensão permite controle, mas pode ser limitada em deformações complexas ou onde maior realismo seja necessário. O nosso trabalho destaca o potencial dos métodos procedimentais para aprimorar a geração de padrões de deformação dinâmica, incluindo rugas, com maior controle criativo e sem depender de dados capturados. A incorporação de padrões procedimentais estáticos melhora o realismo, e a abordagem pode ser estendida além da pele para outros materiais macios.We propose a solution for generating dynamic heightmap data to simulate deformations for soft surfaces, with a focus on human skin. The solution incorporates mesostructure-level wrinkles and utilizes procedural textures to add static microstructure details. It offers flexibility beyond human skin, enabling the generation of patterns mimicking deformations in other soft materials, such as leater, during animation. Existing solutions for simulating wrinkles and deformation cues often rely on specialized hardware, which is costly and not easily accessible. Moreover, relying solely on captured data limits artistic direction and hinders adaptability to changes. In contrast, our proposed solution provides dynamic texture synthesis that adapts to underlying mesh deformations. Various methods have been explored to synthesize wrinkles directly to the geometry, but they suffer from limitations such as self-intersections and increased storage requirements. Manual intervention by artists using wrinkle maps and tension maps provides control but may be limited to the physics-based simulations. Our research presents the potential of procedural methods to enhance the generation of dynamic deformation patterns, including wrinkles, with greater creative control and without reliance on captured data. Incorporating static procedural patterns improves realism, and the approach can be extended to other soft-materials beyond skin

    Target Tracking Using Optical Markers for Remote Handling in ITER

    Get PDF
    The thesis focuses on the development of a vision system to be used in the remote handling systems of the International Thermonuclear Experimental Rector - ITER. It presents and discusses a realistic solution to estimate the pose of key operational targets, while taking into account the specific needs and restrictions of the application. The contributions to the state of the art are in two main fronts: 1) the development of optical markers that can withstand the extreme conditions in the environment; 2) the development of a robust marker detection and identification framework that can be effectively applied to different use cases. The markers’ locations and labels are used in computing the pose. In the first part of the work, a retro reflective marker made up ITER compliant materials, particularly, fused silica and stainless steel, is designed. A methodology is proposed to optimize the markers’ performance. Highly distinguishable markers are manufactured and tested. In the second part, a hybrid pipeline is proposed that detects uncoded markers in low resolution images using classical methods and identifies them using a machine learning approach. It is demonstrated that the proposed methodology effectively generalizes to different marker constellations and can successfully detect both retro reflective markers and laser engravings. Lastly, a methodology is developed to evaluate the end-to-end accuracy of the proposed solution using the feedback provided by an industrial robotic arm. Results are evaluated in a realistic test setup for two significantly different use cases. Results show that marker based tracking is a viable solution for the problem at hand and can provide superior performance to the earlier stereo matching based approaches. The developed solutions could be applied to other use cases and applications

    Methods, Models, and Datasets for Visual Servoing and Vehicle Localisation

    Get PDF
    Machine autonomy has become a vibrant part of industrial and commercial aspirations. A growing demand exists for dexterous and intelligent machines that can work in unstructured environments without any human assistance. An autonomously operating machine should sense its surroundings, classify different kinds of observed objects, and interpret sensory information to perform necessary operations. This thesis summarizes original methods aimed at enhancing machine’s autonomous operation capability. These methods and the corresponding results are grouped into two main categories. The first category consists of research works that focus on improving visual servoing systems for robotic manipulators to accurately position workpieces. We start our investigation with the hand-eye calibration problem that focuses on calibrating visual sensors with a robotic manipulator. We thoroughly investigate the problem from various perspectives and provide alternative formulations of the problem and error objectives. The experimental results demonstrate that the proposed methods are robust and yield accurate solutions when tested on real and simulated data. The work package is bundled as a toolkit and available online for public use. In an extension, we proposed a constrained multiview pose estimation approach for robotic manipulators. The approach exploits the available geometric constraints on the robotic system and infuses them directly into the pose estimation method. The empirical results demonstrate higher accuracy and significantly higher precision compared to other studies. In the second part of this research, we tackle problems pertaining to the field of autonomous vehicles and its related applications. First, we introduce a pose estimation and mapping scheme to extend the application of visual Simultaneous Localization and Mapping to unstructured dynamic environments. We identify, extract, and discard dynamic entities from the pose estimation step. Moreover, we track the dynamic entities and actively update the map based on changes in the environment. Upon observing the limitations of the existing datasets during our earlier work, we introduce FinnForest, a novel dataset for testing and validating the performance of visual odometry and Simultaneous Localization and Mapping methods in an un-structured environment. We explored an environment with a forest landscape and recorded data with multiple stereo cameras, an IMU, and a GNSS receiver. The dataset offers unique challenges owing to the nature of the environment, variety of trajectories, and changes in season, weather, and daylight conditions. Building upon the future works proposed in FinnForest Dataset, we introduce a novel scheme that can localize an observer with extreme perspective changes. More specifically, we tailor the problem for autonomous vehicles such that they can recognize a previously visited place irrespective of the direction it previously traveled the route. To the best of our knowledge, this is the first study that accomplishes bi-directional loop closure on monocular images with a nominal field of view. To solve the localisation problem, we segregate the place identification from the pose regression by using deep learning in two steps. We demonstrate that bi-directional loop closure on monocular images is indeed possible when the problem is posed correctly, and the training data is adequately leveraged. All methodological contributions of this thesis are accompanied by extensive empirical analysis and discussions demonstrating the need, novelty, and improvement in performance over existing methods for pose estimation, odometry, mapping, and place recognition

    Data-driven and data-oriented methods for materials science and technologies

    Get PDF
    The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns

    Estimation de cartes d'énergie du bruit apériodique de la marche humaine avec une caméra de profondeur pour la détection de pathologies et modèles légers de détection d'objets saillants basés sur l'opposition de couleurs

    Full text link
    Cette thèse a pour objectif l’étude de trois problèmes : l’estimation de cartes de saillance de l’énergie du bruit apériodique de la marche humaine par la perception de profondeur pour la détection de pathologies, les modèles de détection d’objets saillants en général et les modèles légers en particulier par l’opposition de couleurs. Comme première contribution, nous proposons un système basé sur une caméra de profondeur et un tapis roulant, qui analyse les parties du corps du patient ayant un mouvement irrégulier, en termes de périodicité, pendant la marche. Nous supposons que la marche d'un sujet sain présente n'importe où dans son corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. La présence de bruit et son importance peuvent être utilisées pour signaler la présence et l'étendue de pathologies chez le sujet. Notre système estime, à partir de chaque séquence vidéo, une carte couleur de saillance montrant les zones de fortes irrégularités de marche, en termes de périodicité, appelées énergie de bruit apériodique, de chaque sujet. Notre système permet aussi de détecter automatiquement les cartes des individus sains et ceux malades. Nous présentons ensuite deux approches pour la détection d’objets saillants. Bien qu’ayant fait l’objet de plusieurs travaux de recherche, la détection d'objets saillants reste un défi. La plupart des modèles traitent la couleur et la texture séparément et les considèrent donc implicitement comme des caractéristiques indépendantes, à tort. Comme deuxième contribution, nous proposons une nouvelle stratégie, à travers un modèle simple, presque sans paramètres internes, générant une carte de saillance robuste pour une image naturelle. Cette stratégie consiste à intégrer la couleur dans les motifs de texture pour caractériser une micro-texture colorée, ceci grâce au motif ternaire local (LTP) (descripteur de texture simple mais puissant) appliqué aux paires de couleurs. La dissemblance entre chaque paire de micro-textures colorées est calculée en tenant compte de la non-linéarité des micro-textures colorées et en préservant leurs distances, donnant une carte de saillance intermédiaire pour chaque espace de couleur. La carte de saillance finale est leur combinaison pour avoir des cartes robustes. Le développement des réseaux de neurones profonds a récemment permis des performances élevées. Cependant, il reste un défi de développer des modèles de même performance pour des appareils avec des ressources limitées. Comme troisième contribution, nous proposons une nouvelle approche pour un modèle léger de réseau neuronal profond de détection d'objets saillants, inspiré par les processus de double opposition du cortex visuel primaire, qui lient inextricablement la couleur et la forme dans la perception humaine des couleurs. Notre modèle proposé, CoSOV1net, est entraîné à partir de zéro, sans utiliser de ``backbones'' de classification d'images ou d'autres tâches. Les expériences sur les ensembles de données les plus utilisés et les plus complexes pour la détection d'objets saillants montrent que CoSOV1Net atteint des performances compétitives avec des modèles de l’état-de-l’art, tout en étant un modèle léger de détection d'objets saillants et pouvant être adapté aux environnements mobiles et aux appareils à ressources limitées.The purpose of this thesis is to study three problems: the estimation of saliency maps of the aperiodic noise energy of human gait using depth perception for pathology detection, and to study models for salient objects detection in general and lightweight models in particular by color opposition. As our first contribution, we propose a system based on a depth camera and a treadmill, which analyzes the parts of the patient's body with irregular movement, in terms of periodicity, during walking. We assume that a healthy subject gait presents anywhere in his (her) body, during gait cycles, a depth signal with a periodic pattern without noise. The presence of noise and its importance can be used to point out presence and extent of the subject’s pathologies. Our system estimates, from each video sequence, a saliency map showing the areas of strong gait irregularities, in terms of periodicity, called aperiodic noise energy, of each subject. Our system also makes it possible to automatically detect the saliency map of healthy and sick subjects. We then present two approaches for salient objects detection. Although having been the subject of many research works, salient objects detection remains a challenge. Most models treat color and texture separately and therefore implicitly consider them as independent feature, erroneously. As a second contribution, we propose a new strategy through a simple model, almost without internal parameters, generating a robust saliency map for a natural image. This strategy consists in integrating color in texture patterns to characterize a colored micro-texture thanks to the local ternary pattern (LTP) (simple but powerful texture descriptor) applied to the color pairs. The dissimilarity between each colored micro-textures pair is computed considering non-linearity from colored micro-textures and preserving their distances. This gives an intermediate saliency map for each color space. The final saliency map is their combination to have robust saliency map. The development of deep neural networks has recently enabled high performance. However, it remains a challenge to develop models of the same performance for devices with limited resources. As a third contribution, we propose a new approach for a lightweight salient objects detection deep neural network model, inspired by the double opponent process in the primary visual cortex, which inextricably links color and shape in human color perception. Our proposed model, namely CoSOV1net, is trained from scratch, without using any image classification backbones or other tasks. Experiments on the most used and challenging datasets for salient objects detection show that CoSOV1Net achieves competitive performance with state-of-the-art models, yet it is a lightweight detection model and it is a salient objects detection that can be adapted to mobile environments and resource-constrained devices
    corecore