4,327 research outputs found

    Quasi-Polynomial Tractability

    Get PDF
    Tractability of multivariate problems has become nowadays a popular re- search subject. Polynomial tractability means that the solution of a d-variate problem can be solved to within ε with polynomial cost in ε−1 and d. Unfortunately, many multivariate problems are not polynomially tractable. This holds for all non-trivial unweighted linear tensor product problems. By an unweighted problem we mean the case when all variables and groups of variables play the same role. It seems natural to ask what is the “smallest” non-exponential function T : [1, ∞) × [1, ∞) → [1, ∞) for which we have T-tractability of unweighted linear tensor product problems. That is, when the cost of a multivariate problem can be bounded by a multiple of a power of T(ε−1,d). Under natural assumptions, it turns out that this function is T pol(x, y) := exp((1 + ln x)(1 + ln y)) for all x, y ∈ [1, ∞). The function T pol goes to infinity faster than any polynomial although not “much” faster, and that is why we refer to Tpol-tractability as quasi-polynomial tractability. The main purpose of this paper is to promote quasi-polynomial tractability especially for the study of unweighted multivariate problems. We do this for the worst case and randomized settings and for algorithms using arbitrary linear functionals or only function values. We prove relations between quasi-polynomial tractability in these two settings and for the two classes of algorithms

    Average Case Tractability of Non-homogeneous Tensor Product Problems

    Get PDF
    We study d-variate approximation problems in the average case setting with respect to a zero-mean Gaussian measure. Our interest is focused on measures having a structure of non-homogeneous linear tensor product, where covariance kernel is a product of univariate kernels. We consider the normalized average error of algorithms that use finitely many evaluations of arbitrary linear functionals. The information complexity is defined as the minimal number n(h,d) of such evaluations for error in the d-variate case to be at most h. The growth of n(h,d) as a function of h^{-1} and d depends on the eigenvalues of the covariance operator and determines whether a problem is tractable or not. Four types of tractability are studied and for each of them we find the necessary and sufficient conditions in terms of the eigenvalues of univariate kernels. We illustrate our results by considering approximation problems related to the product of Korobov kernels characterized by a weights g_k and smoothnesses r_k. We assume that weights are non-increasing and smoothness parameters are non-decreasing. Furthermore they may be related, for instance g_k=g(r_k) for some non-increasing function g. In particular, we show that approximation problem is strongly polynomially tractable, i.e., n(h,d)\le C h^{-p} for all d and 0<h<1, where C and p are independent of h and d, iff liminf |ln g_k|/ln k >1. For other types of tractability we also show necessary and sufficient conditions in terms of the sequences g_k and r_k

    Tractability of multivariate analytic problems

    Full text link
    In the theory of tractability of multivariate problems one usually studies problems with finite smoothness. Then we want to know which ss-variate problems can be approximated to within ε\varepsilon by using, say, polynomially many in ss and ε1\varepsilon^{-1} function values or arbitrary linear functionals. There is a recent stream of work for multivariate analytic problems for which we want to answer the usual tractability questions with ε1\varepsilon^{-1} replaced by 1+logε11+\log \varepsilon^{-1}. In this vein of research, multivariate integration and approximation have been studied over Korobov spaces with exponentially fast decaying Fourier coefficients. This is work of J. Dick, G. Larcher, and the authors. There is a natural need to analyze more general analytic problems defined over more general spaces and obtain tractability results in terms of ss and 1+logε11+\log \varepsilon^{-1}. The goal of this paper is to survey the existing results, present some new results, and propose further questions for the study of tractability of multivariate analytic questions

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)
    corecore