2,873 research outputs found

    On Projection-Based Model Reduction of Biochemical Networks-- Part II: The Stochastic Case

    Full text link
    In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used to describe biochemical networks. In contrast to other biochemical network reduction methods, the presented one is projection-based. Projection-based methods are powerful tools, but the cost of their use is the loss of physical interpretation of the nodes in the network. In order alleviate this drawback, we employ structured projectors, which means that some nodes in the network will keep their physical interpretation. For many models in engineering, finding structured projectors is not always feasible; however, in the context of biochemical networks it is much more likely as the networks are often (almost) monotonic. To summarise, the method can serve as a trade-off between approximation quality and physical interpretation, which is illustrated on numerical examples.Comment: Submitted to the 53rd CD

    Constructing Qubits in Physical Systems

    Full text link
    The notion of a qubit is ubiquitous in quantum information processing. In spite of the simple abstract definition of qubits as two-state quantum systems, identifying qubits in physical systems is often unexpectedly difficult. There are an astonishing variety of ways in which qubits can emerge from devices. What essential features are required for an implementation to properly instantiate a qubit? We give three typical examples and propose an operational characterization of qubits based on quantum observables and subsystems.Comment: 16 pages, no figures; IoP LaTeX2e style. Submitted to J. Phys. A: Math. Ge

    Efficient Quantum Computation using Coherent States

    Get PDF
    Universal quantum computation using optical coherent states is studied. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.Comment: 6 pages, 5 figures, extended and modified (in print, PRA

    Protected Rabi oscillation induced by natural interactions among physical qubits

    Full text link
    For a system composed of nine qubits, we show that natural interactions among the qubits induce the time evolution that can be regarded, at discrete times, as the Rabi oscillation of a logical qubit. Neither fine tuning of the parameters nor switching of the interactions is necessary. Although straightforward application of quantum error correction fails, we propose a protocol by which the logical Rabi oscillation is protected against all single-qubit errors. The present method thus opens a simple and realistic way of protecting the unitary time evolution against noise.Comment: In this revised manuscript, new sections V, VI, VII and new appendices A, B, C have been added to give detailed discussions. 13 pages, 4 figure

    Data-driven Economic NMPC using Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a powerful tool to perform data-driven optimal control without relying on a model of the system. However, RL struggles to provide hard guarantees on the behavior of the resulting control scheme. In contrast, Nonlinear Model Predictive Control (NMPC) and Economic NMPC (ENMPC) are standard tools for the closed-loop optimal control of complex systems with constraints and limitations, and benefit from a rich theory to assess their closed-loop behavior. Unfortunately, the performance of (E)NMPC hinges on the quality of the model underlying the control scheme. In this paper, we show that an (E)NMPC scheme can be tuned to deliver the optimal policy of the real system even when using a wrong model. This result also holds for real systems having stochastic dynamics. This entails that ENMPC can be used as a new type of function approximator within RL. Furthermore, we investigate our results in the context of ENMPC and formally connect them to the concept of dissipativity, which is central for the ENMPC stability. Finally, we detail how these results can be used to deploy classic RL tools for tuning (E)NMPC schemes. We apply these tools on both a classical linear MPC setting and a standard nonlinear example from the ENMPC literature
    corecore