6 research outputs found

    Optimizing Phylogenetic Supertrees Using Answer Set Programming

    Full text link
    The supertree construction problem is about combining several phylogenetic trees with possibly conflicting information into a single tree that has all the leaves of the source trees as its leaves and the relationships between the leaves are as consistent with the source trees as possible. This leads to an optimization problem that is computationally challenging and typically heuristic methods, such as matrix representation with parsimony (MRP), are used. In this paper we consider the use of answer set programming to solve the supertree construction problem in terms of two alternative encodings. The first is based on an existing encoding of trees using substructures known as quartets, while the other novel encoding captures the relationships present in trees through direct projections. We use these encodings to compute a genus-level supertree for the family of cats (Felidae). Furthermore, we compare our results to recent supertrees obtained by the MRP method.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, quartet-based phylogeny reconstruction methods have received considerable attentions in the computational biology community. Traditionally, the accuracy of a phylogeny reconstruction method is measured by simulations on synthetic datasets with known "true" phylogenies, while little theoretical analysis has been done. In this paper, we present a new model-based approach to measuring the accuracy of a quartet-based phylogeny reconstruction method. Under this model, we propose three efficient algorithms to reconstruct the "true" phylogeny with a high success probability.</p> <p>Results</p> <p>The first algorithm can reconstruct the "true" phylogeny from the input quartet topology set without quartet errors in <it>O</it>(<it>n</it><sup>2</sup>) time by querying at most (<it>n </it>- 4) log(<it>n </it>- 1) quartet topologies, where <it>n </it>is the number of the taxa. When the input quartet topology set contains errors, the second algorithm can reconstruct the "true" phylogeny with a probability approximately 1 - <it>p </it>in <it>O</it>(<it>n</it><sup>4 </sup>log <it>n</it>) time, where <it>p </it>is the probability for a quartet topology being an error. This probability is improved by the third algorithm to approximately <inline-formula><m:math name="1748-7188-3-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msup><m:mi>q</m:mi><m:mn>2</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mn>2</m:mn></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>4</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>16</m:mn></m:mrow></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>5</m:mn></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqaIXaqmaeaacqaIXaqmcqGHRaWkcqWGXbqCdaahaaqabeaacqaIYaGmaaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaGaemyCae3aaWbaaeqabaGaeGinaqdaaiabgUcaRmaalaaabaGaeGymaedabaGaeGymaeJaeGOnaydaaiabdghaXnaaCaaabeqaaiabiwda1aaaaaaaaa@3D5A@</m:annotation></m:semantics></m:math></inline-formula>, where <inline-formula><m:math name="1748-7188-3-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mi>q</m:mi><m:mo>=</m:mo><m:mfrac><m:mi>p</m:mi><m:mrow><m:mn>1</m:mn><m:mo>βˆ’</m:mo><m:mi>p</m:mi></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemyCaeNaeyypa0tcfa4aaSaaaeaacqWGWbaCaeaacqaIXaqmcqGHsislcqWGWbaCaaaaaa@3391@</m:annotation></m:semantics></m:math></inline-formula>, with running time of <it>O</it>(<it>n</it><sup>5</sup>), which is at least 0.984 when <it>p </it>< 0.05.</p> <p>Conclusion</p> <p>The three proposed algorithms are mathematically guaranteed to reconstruct the "true" phylogeny with a high success probability. The experimental results showed that the third algorithm produced phylogenies with a higher probability than its aforementioned theoretical lower bound and outperformed some existing phylogeny reconstruction methods in both speed and accuracy.</p

    Relating Weight Constraint and Aggregate Programs: Semantics and Representation

    Full text link
    Weight constraint and aggregate programs are among the most widely used logic programs with constraints. In this paper, we relate the semantics of these two classes of programs, namely the stable model semantics for weight constraint programs and the answer set semantics based on conditional satisfaction for aggregate programs. Both classes of programs are instances of logic programs with constraints, and in particular, the answer set semantics for aggregate programs can be applied to weight constraint programs. We show that the two semantics are closely related. First, we show that for a broad class of weight constraint programs, called strongly satisfiable programs, the two semantics coincide. When they disagree, a stable model admitted by the stable model semantics may be circularly justified. We show that the gap between the two semantics can be closed by transforming a weight constraint program to a strongly satisfiable one, so that no circular models may be generated under the current implementation of the stable model semantics. We further demonstrate the close relationship between the two semantics by formulating a transformation from weight constraint programs to logic programs with nested expressions which preserves the answer set semantics. Our study on the semantics leads to an investigation of a methodological issue, namely the possibility of compact representation of aggregate programs by weight constraint programs. We show that almost all standard aggregates can be encoded by weight constraints compactly. This makes it possible to compute the answer sets of aggregate programs using the ASP solvers for weight constraint programs. This approach is compared experimentally with the ones where aggregates are handled more explicitly, which show that the weight constraint encoding of aggregates enables a competitive approach to answer set computation for aggregate programs.Comment: To appear in Theory and Practice of Logic Programming (TPLP), 2011. 30 page

    Quartet based phylogeny reconstruction with answer set programming

    No full text
    Evolution is an important sub-area of study in biological science, where given a set of species, the goal is to reconstruct their evolutionary history, or phylogeny. Many kinds of data associated with the species can be deployed for this task and many reconstruction methods have been proposed and examined in the literature. One very recent approach is to build a local phylogeny for every subset of 4 species, which is called a quartet for these 4 species, and then to assemble a phylogeny for the whole set of species satisfying these predicted quartets. In general, those predicted quartets might not always agree each other; and thus the objective function becomes to satisfy a maximum number of predicted quartets. This is the well known Maximum Quartet Consistency (MQC) problem, which is studied by a lot of researchers in the last two decades. In this paper, we present a new equivalent representation for the MQC problem, that is, to search for an ultrametric matrix to satisfy the maximum number of those predicted quartets. We examine a few number of structural properties of the MQC problem in this new representation, through formulating it into Answer Set Programming (ASP), a recent powerful logic programming tool for modeling and solving searching problems. The efficiency and usefulness of our approach are confirmed by our computational experiments on the artificial data as well as two real datasets. 1

    Quartet-Based Phylogeny Reconstruction with Answer Set Programming

    No full text
    corecore