2 research outputs found

    Quantum Walk in Terms of Quantum Bernoulli Noise and Quantum Central Limit Theorem for Quantum Bernoulli Noise

    Get PDF
    As a unitary quantum walk with infinitely many internal degrees of freedom, the quantum walk in terms of quantum Bernoulli noise (recently introduced by Wang and Ye) shows a rather classical asymptotic behavior, which is quite different from the case of the usual quantum walks with a finite number of internal degrees of freedom. In this paper, we further examine the structure of the walk. By using the Fourier transform on the state space of the walk, we obtain a formula that links the moments of the walk’s probability distributions directly with annihilation and creation operators on Bernoulli functionals. We also prove some other results on the structure of the walk. Finally, as an application of these results, we establish a quantum central limit theorem for the annihilation and creation operators themselves

    A New Limit Theorem for Quantum Walk in Terms of Quantum Bernoulli Noises

    No full text
    In this paper, we consider limit probability distributions of the quantum walk recently introduced by Wang and Ye (C.S. Wang and X.J. Ye, Quantum walk in terms of quantum Bernoulli noises, Quantum Inf. Process. 15 (2016), no. 5, 1897–1908). We first establish several technical theorems, which themselves are also interesting. Then, by using these theorems, we prove that, for a wide range of choices of the initial state, the above-mentioned quantum walk has a limit probability distribution of standard Gauss type, which actually gives a new limit theorem for the walk
    corecore