373 research outputs found

    Unsupervised quantum machine learning for fraud detection

    Full text link
    We develop quantum protocols for anomaly detection and apply them to the task of credit card fraud detection (FD). First, we establish classical benchmarks based on supervised and unsupervised machine learning methods, where average precision is chosen as a robust metric for detecting anomalous data. We focus on kernel-based approaches for ease of direct comparison, basing our unsupervised modelling on one-class support vector machines (OC-SVM). Next, we employ quantum kernels of different type for performing anomaly detection, and observe that quantum FD can challenge equivalent classical protocols at increasing number of features (equal to the number of qubits for data embedding). Performing simulations with registers up to 20 qubits, we find that quantum kernels with re-uploading demonstrate better average precision, with the advantage increasing with system size. Specifically, at 20 qubits we reach the quantum-classical separation of average precision being equal to 15%. We discuss the prospects of fraud detection with near- and mid-term quantum hardware, and describe possible future improvements.Comment: 7 pages, 4 figure

    Quantum State Estimation and Tracking for Superconducting Processors Using Machine Learning

    Get PDF
    Quantum technology has been rapidly growing; in particular, the experiments that have been performed with superconducting qubits and circuit QED have allowed us to explore the light-matter interaction at its most fundamental level. The study of coherent dynamics between two-level systems and resonator modes can provide insight into fundamental aspects of quantum physics, such as how the state of a system evolves while being continuously observed. To study such an evolving quantum system, experimenters need to verify the accuracy of state preparation and control since quantum systems are very fragile and sensitive to environmental disturbance. In this thesis, I look at these continuous monitoring and state estimation problems from a modern point of view. With the help of machine learning techniques, it has become possible to explore regimes that are not accessible with traditional methods: for example, tracking the state of a superconducting transmon qubit continuously with dynamics fast compared with the detector bandwidth. These results open up a new area of quantum state tracking, enabling us to potentially diagnose errors that occur during quantum gates. In addition, I investigate the use of supervised machine learning, in the form of a modified denoising autoencoder, to simultaneously remove experimental noise while encoding one and two-qubit quantum state estimates into a minimum number of nodes within the latent layer of a neural network. I automate the decoding of these latent representations into positive density matrices and compare them to similar estimates obtained via linear inversion and maximum likelihood estimation. Using a superconducting multiqubit chip, I experimentally verify that the neural network estimates the quantum state with greater fidelity than either traditional method. Furthermore, the network can be trained using only product states and still achieve high fidelity for entangled states. This simplification of the training overhead permits the network to aid experimental calibration, such as the diagnosis of multi-qubit crosstalk. As quantum processors increase in size and complexity, I expect automated methods such as those presented in this thesis to become increasingly attractive

    Cross-verification of independent quantum devices

    Get PDF
    Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers. This naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simulation. Here we present a verification technique that exploits the principles of measurement-based quantum computation to link quantum circuits of different input size, depth, and structure. Our approach enables consistency checks of quantum computations within a device, as well as between independent devices. We showcase our protocol by applying it to five state-of-the-art quantum processors, based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped ions, and photonics, with up to 6 qubits and 200 distinct circuits
    corecore