280,371 research outputs found

    Solid-state quantum optics with quantum dots in photonic nanostructures

    Full text link
    Quantum nanophotonics has become a new research frontier where quantum optics is combined with nanophotonics in order to enhance and control the interaction between strongly confined light and quantum emitters. Such progress provides a promising pathway towards quantum-information processing on an all-solid-state platform. Here we review recent progress on experiments with single quantum dots in nanophotonic structures. Embedding the quantum dots in photonic band-gap structures offers a way of controlling spontaneous emission of single photons to a degree that is determined by the local light-matter coupling strength. Introducing defects in photonic crystals implies new functionalities. For instance, efficient and strongly confined cavities can be constructed enabling cavity-quantum-electrodynamics experiments. Furthermore, the speed of light can be tailored in a photonic-crystal waveguide forming the basis for highly efficient single-photon sources where the photons are channeled into the slowly propagating mode of the waveguide. Finally, we will discuss some of the surprises that arise in solid-state implementations of quantum-optics experiments in comparison to their atomic counterparts. In particular, it will be shown that the celebrated point-dipole description of light-matter interaction can break down when quantum dots are coupled to plasmon nanostructures.Comment: Review. 15 pages, 9 figure

    Anomalous lack of decoherence of the Macroscopic Quantum Superpositions based on phase-covariant Quantum Cloning

    Full text link
    We show that all Macroscopic Quantum Superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the de-coherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence - free structures for quantum information, such as the quantum computer.Comment: 4 pages, 3 figure

    Polariton Dispersion Law in Periodic Bragg and Near-Bragg Multiple Quantum Well Structures

    Full text link
    The structure of polariton spectrum is analyzed for periodic multiple quantum well structures with periods at or close to Bragg resonance condition at the wavelength of the exciton resonance. The results obtained used to discuss recent reflection and luminescent experiments by M. H\"{u}bner et al [Phys. Rev. Lett. {\bf 83}, 2841 (1999)] carried out with long multiple quantum well structures. It is argued that the discussion of quantum well structures with large number of wells is more appropriate in terms of normal modes of infinite periodic structures rather then in terms of super- and sub- radiant modes.Comment: replaced with a new version, an error in one of the equations is correcte

    Quantum Structure in Cognition, Origins, Developments, Successes and Expectations

    Full text link
    We provide an overview of the results we have attained in the last decade on the identification of quantum structures in cognition and, more specifically, in the formalization and representation of natural concepts. We firstly discuss the quantum foundational reasons that led us to investigate the mechanisms of formation and combination of concepts in human reasoning, starting from the empirically observed deviations from classical logical and probabilistic structures. We then develop our quantum-theoretic perspective in Fock space which allows successful modeling of various sets of cognitive experiments collected by different scientists, including ourselves. In addition, we formulate a unified explanatory hypothesis for the presence of quantum structures in cognitive processes, and discuss our recent discovery of further quantum aspects in concept combinations, namely, 'entanglement' and 'indistinguishability'. We finally illustrate perspectives for future research.Comment: 25 pages. arXiv admin note: text overlap with arXiv:1412.870

    Spin and orbital mechanisms of the magneto-gyrotropic photogalvanic effects in GaAs/AlGaAs quantum well structures

    Get PDF
    We report on the study of the linear and circular magneto-gyrotropic photogalvanic effect (MPGE) in GaAs/AlGaAs quantum well structures. Using the fact that in such structures the Land\'e-factor g* depends on the quantum well (QW) width and has different signs for narrow and wide QWs, we succeeded to separate spin and orbital contributions to both MPGEs. Our experiments show that, for most quantum well widths, the PGEs are mainly driven by spin-related mechanisms, which results in a photocurrent proportional to the g* factor. In structures with a vanishingly small g* factor, however, linear and circular MPGE are also detected, proving the existence of orbital mechanisms.Comment: 10 pages, 10 figure

    Optical Properties and Modal Gain of InGaN Quantum Dot Stacks

    Full text link
    We present investigations of the optical properties of stacked InGaN quantum dot layers and demonstrate their advantage over single quantum dot layer structures. Measurements were performed on structures containing a single layer with quantum dots or threefold stacked quantum dot layers, respectively. A superlinear increase of the quantum dot related photoluminescence is detected with increasing number of quantum dot layers while other relevant GaN related spectral features are much less intensive when compared to the photoluminescence of a single quantum dot layer. The quantum dot character of the active material is verified by microphotoluminescence experiments at different temperatures. For the possible integration within optical devices in the future the threshold power density was investigated as well as the modal gain by using the variable stripe length method.Comment: 9 Pages, 4 Figure

    Subband Engineering Even-Denominator Quantum Hall States

    Full text link
    Proposed even-denominator fractional quantum Hall effect (FQHE) states suggest the possibility of excitations with non-Abelian braid statistics. Recent experiments on wide square quantum wells observe even-denominator FQHE even under electrostatic tilt. We theoretically analyze these structures and develop a procedure to accurately test proposed quantum Hall wavefunctions. We find that tilted wells favor partial subband polarization to yield Abelian even-denominator states. Our results show that tilting quantum wells effectively engineers different interaction potentials allowing exploration of a wide variety of even-denominator states
    • …
    corecore