68,666 research outputs found

    Quantum Physics from A to Z

    Full text link
    This is a collection of statements gathered on the occasion of the Quantum Physics of Nature meeting in Vienna.Comment: 3 pages, Quantum Physics of Nature (QUPON) Conference, Vienna, Austria, May 22nd-26th, 2005; v4: more contribution

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Correlations in Quantum Physics

    Full text link
    We provide an historical perspective of how the notion of correlations has evolved within quantum physics. We begin by reviewing Shannon's information theory and its first application in quantum physics, due to Everett, in explaining the information conveyed during a quantum measurement. This naturally leads us to Lindblad's information theoretic analysis of quantum measurements and his emphasis of the difference between the classical and quantum mutual information. After briefly summarising the quantification of entanglement using these and related ideas, we arrive at the concept of quantum discord that naturally captures the boundary between entanglement and classical correlations. Finally we discuss possible links between discord and the generation of correlations in thermodynamic transformations of coupled harmonic oscillators.Comment: 10 pages, 1 figure. Submitted to Int. J. Mod. Phys. B, special issue "Classical Vs Quantum correlations in composite systems" edited by L. Amico, S. Bose, V. Korepin and V. Vedra

    Quantum Physics and Computers

    Get PDF
    Recent theoretical results confirm that quantum theory provides the possibility of new ways of performing efficient calculations. The most striking example is the factoring problem. It has recently been shown that computers that exploit quantum features could factor large composite integers. This task is believed to be out of reach of classical computers as soon as the number of digits in the number to factor exceeds a certain limit. The additional power of quantum computers comes from the possibility of employing a superposition of states, of following many distinct computation paths and of producing a final output that depends on the interference of all of them. This ``quantum parallelism'' outstrips by far any parallelism that can be thought of in classical computation and is responsible for the ``exponential'' speed-up of computation. This is a non-technical (or at least not too technical) introduction to the field of quantum computation. It does not cover very recent topics, such as error-correction.Comment: 27 pages, LaTeX, 8 PostScript figures embedded. A bug in one of the postscript files has been fixed. Reprints available from the author. The files are also available from http://eve.physics.ox.ac.uk/Articles/QC.Articles.htm

    Measurement in Quantum Physics

    Get PDF
    The conceptual problems in quantum mechanics -- related to the collapse of the wave function, the particle-wave duality, the meaning of measurement -- arise from the need to ascribe particle character to the wave function. As will be shown, all these problems dissolve when working instead with quantum fields, which have both wave and particle character. Otherwise the predictions of quantum physics, including Bell's inequalities, coincide with those of the standard treatments. The transfer of the results of the quantum measurement to the classical realm is also discussed.Comment: 34 pages, in Latex, revised and expanded version with an extra appendix on decoherenc
    corecore