199,108 research outputs found

    Quantum Optimization Problems

    Full text link
    Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for an NP optimization problem that searches an optimal value among exponentially-many outcomes of polynomial-time computations. This paper expands his framework to a quantum optimization problem using polynomial-time quantum computations and introduces the notion of an ``universal'' quantum optimization problem similar to a classical ``complete'' optimization problem. We exhibit a canonical quantum optimization problem that is universal for the class of polynomial-time quantum optimization problems. We show in a certain relativized world that all quantum optimization problems cannot be approximated closely by quantum polynomial-time computations. We also study the complexity of quantum optimization problems in connection to well-known complexity classes.Comment: date change

    Readiness of Quantum Optimization Machines for Industrial Applications

    Full text link
    There have been multiple attempts to demonstrate that quantum annealing and, in particular, quantum annealing on quantum annealing machines, has the potential to outperform current classical optimization algorithms implemented on CMOS technologies. The benchmarking of these devices has been controversial. Initially, random spin-glass problems were used, however, these were quickly shown to be not well suited to detect any quantum speedup. Subsequently, benchmarking shifted to carefully crafted synthetic problems designed to highlight the quantum nature of the hardware while (often) ensuring that classical optimization techniques do not perform well on them. Even worse, to date a true sign of improved scaling with the number of problem variables remains elusive when compared to classical optimization techniques. Here, we analyze the readiness of quantum annealing machines for real-world application problems. These are typically not random and have an underlying structure that is hard to capture in synthetic benchmarks, thus posing unexpected challenges for optimization techniques, both classical and quantum alike. We present a comprehensive computational scaling analysis of fault diagnosis in digital circuits, considering architectures beyond D-wave quantum annealers. We find that the instances generated from real data in multiplier circuits are harder than other representative random spin-glass benchmarks with a comparable number of variables. Although our results show that transverse-field quantum annealing is outperformed by state-of-the-art classical optimization algorithms, these benchmark instances are hard and small in the size of the input, therefore representing the first industrial application ideally suited for testing near-term quantum annealers and other quantum algorithmic strategies for optimization problems.Comment: 22 pages, 12 figures. Content updated according to Phys. Rev. Applied versio

    Towards optimization of quantum circuits

    Get PDF
    Any unitary operation in quantum information processing can be implemented via a sequence of simpler steps - quantum gates. However, actual implementation of a quantum gate is always imperfect and takes a finite time. Therefore, seeking for a short sequence of gates - efficient quantum circuit for a given operation, is an important task. We contribute to this issue by proposing optimization of the well-known universal procedure proposed by Barenco et.al [1]. We also created a computer program which realizes both Barenco's decomposition and the proposed optimization. Furthermore, our optimization can be applied to any quantum circuit containing generalized Toffoli gates, including basic quantum gate circuits.Comment: 10 pages, 11 figures, minor changes+typo

    PennyLane: Automatic differentiation of hybrid quantum-classical computations

    Full text link
    PennyLane is a Python 3 software framework for optimization and machine learning of quantum and hybrid quantum-classical computations. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware. We provide plugins for Strawberry Fields, Rigetti Forest, Qiskit, Cirq, and ProjectQ, allowing PennyLane optimizations to be run on publicly accessible quantum devices provided by Rigetti and IBM Q. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, and autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.Comment: Code available at https://github.com/XanaduAI/pennylane/ . Significant contributions to the code (new features, new plugins, etc.) will be recognized by the opportunity to be a co-author on this pape

    Quantum Discord for Generalized Bloch Sphere States

    Full text link
    In this study for particular states of bipartite quantum system in 2n?2m dimensional Hilbert space state, similar to m or n-qubit density matrices represented in Bloch sphere we call them generalized Bloch sphere states(GBSS), we give an efficient optimization procedure so that analytic evaluation of quantum discord can be performed. Using this optimization procedure, we find an exact analytical formula for the optimum positive operator valued measure (POVM) that maximize the measure of the classical correlation for these states. The presented optimization procedure also is used to show that for any concave entropy function the same POVMs are sufficient for quantum discord of mentioned states. Furthermore, We show that such optimization procedure can be used to calculate the geometric measure of quantum discord (GMQD) and then an explicit formula for GMQD is given. Finally, a complete geometric view is presented for quantum discord of GBSS. Keywords: Quantum Discord, Generalized Bloch Sphere States, Dirac matrices, Bipartite Quantum System. PACs Index: 03.67.-a, 03.65.Ta, 03.65.UdComment: 26 pages. arXiv admin note: text overlap with arXiv:1107.5174 by other author
    corecore