8 research outputs found

    A Tight Bound for Probability of Error for Quantum Counting Based Multiuser Detection

    Full text link
    Future wired and wireless communication systems will employ pure or combined Code Division Multiple Access (CDMA) technique, such as in the European 3G mobile UMTS or Power Line Telecommunication system, but also several 4G proposal includes e.g. multi carrier (MC) CDMA. Former examinations carried out the drawbacks of single user detectors (SUD), which are widely employed in narrowband IS-95 CDMA systems, and forced to develop suitable multiuser detection schemes to increase the efficiency against interference. However, at this moment there are only suboptimal solutions available because of the rather high complexity of optimal detectors. One of the possible receiver technologies can be the quantum assisted computing devices which allows high level parallelism in computation. The first commercial devices are estimated for the next years, which meets the advert of 3G and 4G systems. In this paper we analyze the error probability and give tight bounds in a static and dynamically changing environment for a novel quantum computation based Quantum Multiuser detection (QMUD) algorithm, employing quantum counting algorithm, which provides optimal solution.Comment: presented at IEEE ISIT 2002, 7 pages, 2 figure

    Low-complexity iterative quantum multi-user detection in SDMA systems

    No full text
    The potentially excessive complexity of the Maximum Likelihood Multi-User Detector (ML MUD) in large-scale Spatial Division Multiple Access (SDMA) systems dictates the employment of low-complexity sub-optimal MUDs in the context of conventional systems. However, this limitation was circumvented by the recently proposed Durr-Høyer Algorithm (DHA)-aided Quantum Weighted Sum Algorithm (QWSA)-based Quantum Multi-User Detector (QMUD) employed for performing optimal ML iterative detection in SDMA systems. Focusing our attention on the QWSA, we analyse the QMUD and the evolution of the quantum system with the aid of a simple SDMA uplink scenario. We characterize the performance of the DHA-QWSA QMUD advocated, which is capable of matching the performance of the ML MUD both in terms of its EXIT charts and BER curves

    Low-complexity iterative quantum multi-user detection in SDMA systems

    No full text
    corecore